

Environment

Prepared for: North Carolina Department of Transportation Raleigh, NC Prepared by: AECOM Raleigh, NC 60154105.6 November 2010

2010 Site Assessment Report

North Carolina Department of Transportation NCDOT Pittsboro Asphalt Site No. 6-48 (34613.3.13) 240 Sugar Lake Road Pittsboro, Chatham County, North Carolina, USA

Prepared for: North Carolina Department of Transportation Raleigh, NC

Prepared by: AECOM Raleigh, NC 60154105.6 November 2010

2010 Site Assessment Report

North Carolina Department of Transportation NCDOT Pittsboro Asphalt Site No. 6-48 (34613.3.13) 240 Sugar Lake Road Pittsboro, Chatham County, North Carolina, USA

Prepared By Michael Dail, P.G. Senior Staff Scientist

Reviewed By Matt Brennan

L. **Project Scientist Reviewed By Michael** Senior Scientist

⁷⁸⁸¹²¹¹⁸⁸⁵

Contents

1.0	Introd	uction	1-1
	1.1	Site History	. 1-1
	1.2	Regional Geology and Hydrogeology	. 1-2
2.0	Invest	igation Methodology	2-1
	2.1	Geologic Field Reconnaissance	. 2-1
	2.2	Fracture Trace Survey	. 2-1
	2.3	Soil Sampling	. 2-1
	2.4	Monitoring Well Installation	. 2-2
	2.5	Monitoring Well Sampling	. 2-3
	2.6	Industrial Derived Waste	. 2-3
3.0	Result	S	3-1
	3.1	Site Geology	. 3-1
	3.2	Fracture Trace Analysis	. 3-1
	3.3	Soil Analytical Results	. 3-1
		3.3.1 Former North Carolina Department of Transportation Laboratory and Septic Tank Area	3-2
		3.3.2 Current Asphalt Laboratory Area	. 3-2
		3.3.3 Former Potable Water Well Area	. 3-3
		3.3.4 Septic Tank Percolation Area	. 3-3
	3.4	Site Hydrogeology	. 3-3
	3.5	Groundwater Analytical Results	. 3-3
4.0	Concl	usions	4-1
5.0	Refere	nces	5-1

List of Appendices

- Appendix A Aerial Photographs
- Appendix B Boring Logs
- Appendix C Well Construction Records
- Appendix D Groundwater Sample Collection Records

Appendix E Laboratory Analytical Reports and Chain of Custody

November 2010

List of Tables

Table 2.1	Well Construction and Groundwater Elevation
Table 3.1	Summary of Soil Analytical Results
Table 3.2	Summary of Groundwater Analytical Results
Table 3.3	Summary of Field Parameters

List of Figures

Figure 1.1	Site Location Map
Figure 1.2	Site Plan
Figure 2.1	Soil Sample Location Map
Figure 2.2	Monitoring Well Location Map
Figure 3.1	Geologic Cross-section Map
Figure 3.2	Geologic Cross-section A-A'
Figure 3.3	Fracture-Trace Analysis Rose Diagram
Figure 3.4	Soil TCE Isoconcentration Map – June 2010
Figure 3.5	Surficial Aquifer Potentiometric Map – June 2010
Figure 3.6	Shallow Bedrock Aquifer Potentiometric Map – June 2010
Figure 3.7	Surficial Aquifer TCE Isoconcentration Map – April & July 2010
Figure 3.8	Shallow Bedrock Aquifer TCE Isoconcentration Map – April & July 2010

List of Acronyms

1,1-DCE	1,1-dichloroethene
1,1,1-TCA	1,1,1- trichloroethane
1,2,3-TCP	1,2,3-trichloropropane
2L Standard	North Carolina Groundwater Standards
AECOM	AECOM North Carolina, Inc.
CAP	Corrective Action Plan
CLP	Contract Laboratory Program
CSA	Comprehensive Site Assessment
DO	dissolved oxygen
DPT	direct push technology
EPA	United States Environmental Protection Agency
ft bls	feet below land surface
G&M	Geraghty & Miller, Inc.
IHSB	Inactive Hazardous Sites Branch
NCDENR	North Carolina Department of Environment and Natural Resources
NCDOT	North Carolina Department of Transportation
ORP	oxygen reduction potential
PDBs	passive diffusion bags
PID	Photoionization Detector
PVC	polyvinyl chloride
PWR	partially weathered rock
SGS	SGS North America, Inc.
SRGs	soil remediation goals
TCE	trichloroethene

- USGS United States Geological Survey
- VOCs volatile organic compounds
- µg/kg micrograms per kilogram
- μg/L micrograms per liter

1.0 Introduction

AECOM North Carolina, Inc. (AECOM) is pleased to submit this *Site Assessment Report* (Report) to the North Carolina Department of Transportation (NCDOT). This report presents the findings of the limited soil and groundwater assessment activities conducted by AECOM at the former NCDOT Pittsboro Asphalt Site No. 6–48 (Site) located at 240 Sugar Lake Road (SR 1714) in Pittsboro, Chatham County, North Carolina (Figure 1.1). The Site is currently owned by S.T. Wooten Company and is used as an asphalt production facility and includes an active laboratory. Primary objectives of the site assessment were to:

- Perform a fracture trace analysis to determine the orientation of fractures, which can influence groundwater and contaminant flow;
- Confirm presence of diabase dikes reported in the vicinity. Diabase dikes can act as a preferential pathway of contaminants in groundwater due to relatively high fracture densities compared to the surrounding country rocks;
- Evaluate potential volatile organic compound (VOC) source areas including:
 - Former NCDOT Asphalt Testing Laboratory Area;
 - Current Asphalt Testing Laboratory Area;
 - Former Potable Water Well Area; and
 - Septic Tank Percolation Area.
- Determine the current concentrations and vertical extent of VOCs in groundwater immediately down gradient of the former NCDOT asphalt testing laboratory location.

1.1 Site History

The NCDOT operated an asphalt testing laboratory at the Site for an unknown period of time and used several different solvents at different times throughout its operation including carbon tetrachloride, trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) [NCDOT target compounds].

The laboratory location and period of NCDOT laboratory use is unclear. Figures presented in the Corrective Action Plan (CAP) prepared by S&ME, Inc. indicate the NCDOT laboratory was located less than 50-feet northeast of groundwater monitoring well 48DW-1 (Figure 1-2). To help confirm the former laboratory location and operational history, AECOM obtained historical aerial photographs from the Chatham County Geographic Information Systems Department. Aerial photographs from April 1977 are inconclusive and of poor quality, but illustrate several small structures in the area where the former NCDOT testing laboratory was purportedly located. The 1987 aerial photograph illustrates a structure in the same approximate location as the current asphalt testing laboratory. No structures were observed near the location designated as the former NCDOT laboratory location. Copies of the aerial photographs are presented in Appendix A.

In 1989, the NCDOT began assessing former NCDOT asphalt testing laboratories for environmental impacts related to their use of chlorinated VOC's. A preliminary site survey conducted by the NCDOT

at the Site reported the detection of TCE and 1,1,1–TCA in groundwater and carbon tetrachloride in soil. A Comprehensive Site Assessment (CSA) report was submitted to North Carolina Department of Environment and Natural Resources (NCDENR) in June 1997 by Geraghty & Miller, Inc. (G&M), for NCDOT (G&M CSA Report). The G&M CSA Report documented soil and groundwater impacted with chlorinated hydrocarbons. In response to these impacts, a CAP was prepared by S&ME, Inc., and submitted to NCDENR in September 1999. The CAP proposed a remediation system network including groundwater pump and treat, air sparging, and soil vapor extraction. The soil and groundwater remediation system network was installed at the site in 2002 (Figure 1.2).

Since the start of corrective action, the areal extent of the TCE plume has been reduced; however, TCE concentrations have remained stable in monitoring well MW-1 and the groundwater treatment system influent, indicating a persistent source of groundwater impacts.

1.2 Regional Geology and Hydrogeology

The site is situated within the east-central portion of North Carolina's piedmont physiographic region which is characterized by differing thicknesses of saprolite overlying a transition zone of partially weathered rock (PWR) and fractured bedrock. This transition zone generally grades into more consolidated, less fractured rock with depth. Piedmont geology predominately consists of metamorphic rocks including gneiss, schist, and metamorphosed granitic rocks, which typically occur in a series of northeast trending belts. The Site is located in the Carolina Slate Belt, which consists of folded and mildly metamorphosed volcanic and sedimentary rocks. The local geology of the Site consists of felsic metavolcanic rocks (Brown, 1985). More specifically, bedrock at the Site is heterogeneous tuffs of felsic to intermediate composition with lesser interlayers of andesitic to basaltic lavas and epiclastic rocks (Bradley et al. 2007).

Groundwater flow systems in the Piedmont are typically separated into three hydrogeologic zones; saprolite, PWR, and bedrock. Groundwater in saprolite and PWR generally flows parallel to the bedrock surface before discharging into surface water bodies (LeGrand, 2004). Groundwater flow through saprolite is generally controlled by primary and relic secondary porosity features. Saprolite transmits water slowly, but has a high storage capacity with porosity ranges of 35 to 55 percent near the ground surface and decreases with depth (LeGrand, 2004).

The PWR zone is characterized as a highly permeable zone that is conducive for rapid groundwater flow. Similar to saprolite, groundwater in PWR flows parallel to the bedrock surface flowing from topographic highs to topographic lows. Secondary porosity features such as fractures, faults and weathered zones determine movement of groundwater in the transition zone.

In the underlying bedrock, groundwater occurrence and flow is dictated by the presence of fracture zones. Groundwater movement in bedrock is dependent upon secondary porosity in the form of fractures and solution openings (LeGrand, 2004). Fractured bedrock has the ability to transmit water rapidly depending on the interconnectivity of fractures, but it has a relatively low storage capacity. Groundwater contained in the bedrock portion of the aquifer will also typically discharge to a perennial stream or surface water body and mix with the water discharged from the saprolite and PWR (LeGrand, 2004).

2.0 Investigation Methodology

In the spring of 2010, AECOM conducted several field activities including: fracture trace survey, geologic field recon, soil investigation, monitoring well installation, and groundwater sampling collection from all monitoring wells on-site. The following sections discuss the field activities in greater detail.

2.1 Geologic Field Reconnaissance

On April 15th 2010, AECOM conducted a geologic field reconnaissance to measure fracture attitudes in outcrops near the Site. Field measurements of fractures were recorded from outcrops along creeks to the east, south and west of the site and incorporated in the fracture trace analysis. A secondary goal of the geologic field reconnaissance was to document if diabase dikes are present in the area. Diabase was reported in the boring logs for 48DW-3 presented in the CSA (S&ME, 1999). Diabase dikes can act as a preferential pathway of contaminates in groundwater due to relatively high fracture densities compared to the surrounding country rocks.

2.2 Fracture Trace Survey

A fracture trace is the surficial representation of an underlying fracture zone, joint, fault, or bedding plane. Fracture traces may reveal themselves on the surface as tonal variations in soils, alignment of vegetative patterns, straight stream segments or valleys, aligned surface depressions, gaps in ridges, and other features showing a linear orientation. These natural, linear topographic features are generally attributable to the presence of water in the underlying fractures or fracture zones. Fracture-trace analysis is useful in determining the preferential direction of groundwater and contaminate flow in an area.

Fracture traces in the area were identified during a desktop analysis of readily available United States Geological Survey (USGS) topographic maps, aerial photos, and satellite imagery. The approximate distance from the site, segment length, and bearings of the identified features were recorded and tabulated. The fracture-trace analysis also includes measurement of fracture sets from bedrock outcrops along unnamed creeks to the east, south, and west. Due to the scales available maps and image scales, fracture traces were limited to surface water features and their associated valleys.

2.3 Soil Sampling

Soil borings were advanced in four general areas of concern; 1) the former NCDOT laboratory and septic tank area; 2) the current asphalt laboratory area; 3) the area adjacent to the former potable water well PW-1; and 4) the septic tank percolation area. Soil samples were collected for the purpose of identifying potential impacted soil source areas and to delineate the horizontal and vertical extent of chlorinated volatile organic compounds (CVOCs) in the areas of concern. The data will also be used to evaluate possible remediation strategies.

Continuous soil core sampling was conducted on-site using direct push technology (DPT) methods. The DPT was advanced to refusal at 22 locations (Figure 2.1). At each location soils were collected at two foot intervals and field screened using a Photoionization Detector (PID), flame ionization detector, and for total chlorinated ethenes using a ColorTec® colorimetric test kit. Field screening was

used to obtain real-time, semi-quantitative measurements of chlorinated ethene and VOC concentrations in soil, and were used to assist in selection of boring locations for contamination delineation. Based on field screening results, 30 samples were selected for laboratory analyses.

Generally, the soil sample with the highest PID and/or Color-Tec® readings from each boring were retained for laboratory analysis of VOCs by United States Environmental Protection Agency (EPA) Method 8260B. The samples were placed into laboratory supplied containers, labeled, and placed in a cooler with ice pending shipment to SGS North America, Inc. (SGS) laboratory in Wilmington, North Carolina under Chain of Custody procedures. Soil cuttings generated during boring advancement were contained in 55-gallon drums.

2.4 Monitoring Well Installation

The average TCE concentration in the groundwater treatment system influent since 2004 (240 micrograms per liter [µg/L]) is more than twice that observed in well MW-1, which has the highest impacts among the Site monitoring wells. The TCE concentration trend in treatment system influent appears to be stable indicating a likely residual TCE source. The disparity between the average influent concentration and that observed in well MW-1 suggests that the source of persistent groundwater impacts exists within the capture zone of the groundwater recovery system but is not identified by the existing Site monitoring well network.

To identify residual groundwater source areas, AECOM installed two type II (48MW-16 and 48MW-17) and one type III (48DW-5) monitoring wells using a combination of hollow stem augers and air rotary techniques. The locations of the monitoring wells are presented as Figure 2.2.

Monitoring well 48MW-16 was installed downgradient of the former NCDOT asphalt testing lab (Figure 2.2) to a depth of approximately 45 feet below land surface (ft bls). Monitoring well 48MW-17 was installed near destroyed monitoring well 48MW-9 to a depth of approximately 35 ft bls to facilitate better control on shallow groundwater flow direction on the western side of the Site. Soil was logged for lithology from two-foot split spoon samples collected at five foot intervals. Boring logs are included in Appendix B.

Each Type II monitoring well was constructed with a two-inch diameter schedule 40 polyvinyl chloride (PVC) casing with 10 feet of 0.010-inch slotted PVC screen. A sand pack was placed in the annulus to a height of approximately two feet above the top of the well screen. A bentonite seal was placed approximately two feet above the sand pack and hydrated. The remainder of the well annulus was filled with grout to the ground surface.

To determine if residual sources were present in bedrock, AECOM installed one type III monitoring well (48DW-5) downgradient of the former NCDOT asphalt testing lab. The well was constructed with a six-inch PVC outer casing advanced approximately three feet into the top of bedrock. The casing was grouted in place and allowed to set for approximately 24 hours. After the grout cured, the borehole was advanced using air rotary techniques to a depth of approximately 102 ft bls and left open hole to facilitate multi-level groundwater sampling (see section 2.5).

Each well was secured with a locking expansion plug, and completed with a three-foot steel protective stick-up cover surrounded by a two-foot square concrete pad. After installation, each monitoring well was developed by pumping and surging with a submersible pump until the turbidity decreased. Development water was containerized in five gallon buckets and transferred to the on-site groundwater treatment facility for disposal. Drill cuttings were placed in 55-gallon drums and staged

A summary of the well construction details is provided in Table 2.1 and the well construction records are included in Appendix C. The horizontal location and vertical elevation of each monitoring well was surveyed by Taylor Wiseman Taylor, a North Carolina licensed surveyor.

2.5 Monitoring Well Sampling

Groundwater samples were collected from each of the 14 existing groundwater monitoring wells in April 2010 during the regularly scheduled semiannual groundwater sampling event. Monitoring wells 48MW-16, 48MW-17, and 48DW-5 were sampled in July 2010 shortly after they were installed. The monitoring well network is shown on Figure 2.2. Groundwater sampling was performed according to AECOM standard operating procedures that generally comply with the requirements of the 2007 Field Branches Quality System and Technical Procedures document.

Each well was purged with a peristaltic pump or a Grundfos® submersible pump. Sample collection records for the field methods used at each well location are presented in Appendix D. Water levels were monitored approximately every three to five minutes and a steady flow rate was maintained to stabilize the water level. Field parameters (temperature, pH, specific conductance, dissolved oxygen [DO], and oxygen reduction potential [ORP]) were measured to ensure collection of a sample representative of formation water. Each well was considered ready for sampling when the parameters had stabilized to within 10 percent for three consecutive readings or if the well purged dry. After purging, groundwater samples were collected at a flow rate between 100 and 250 milliliters per minute. Field parameters were recorded on field data sheets (Appendix D).

Groundwater samples were containerized, preserved, and shipped to the analytical laboratory. Sampling equipment was thoroughly decontaminated with phosphate-free soap and distilled water prior to fieldwork and between wells to prevent cross-contamination.

One week following the installation of monitoring well 48DW-5, AECOM deployed passive diffusion bags (PDBs) at depths corresponding to water bearing fractures documented during well installation (i.e. changes in advancement rate, cuttings, rate of groundwater flow out of the casing). Three PDBs were deployed in monitoring well 48DW-5 at 60 ft bls, 80 ft bls, and 100 ft bls. The PDBs were allowed to equilibrate with the surrounding water for two weeks. After the two week equilibration period, the PDBs were retrieved and the water decanted into laboratory supplied sample containers.

Sample handling, packaging, preservation and storage were conducted in general accordance with AECOM, NCDENR and EPA protocols. Samples were submitted to SGS under Chain of Custody procedures for laboratory analysis of VOCs by EPA Method 8260B.

2.6 Industrial Derived Waste

Decontamination water and water generated during the purging of monitoring wells was temporarily contained in five gallon buckets and transferred to the remediation system 500-gallon equalization tank. Drill cuttings, personal protection equipment, decontamination pad plastic, and groundwater containment plastic were placed in 55-gallon drums and staged on-site pending disposal at a permitted facility by A&D Environmental, Inc., a NCDOT approved waste disposal operator.

3.0 Results

The following sections discuss the field and laboratory results of the Limited Site Assessment. Laboratory analytical reports from SGS and field data associated with samples collected by AECOM personnel were reviewed and validated to ensure that specific data-quality objectives were met. Laboratory analytical reports are provided in Appendix E.

3.1 Site Geology

The subsurface geology encountered at the site generally consists of 10 to 35 feet of yellowish-orange to light gray saprolite composed of silt with minor sand and clay, increasing in grain size with depth. The transition zone from saprolite to bedrock (i.e. PWR) was approximately 4 to 6 feet. A geologic cross-section of the site subsurface was constructed along the lines A to A' (Figure 3.1). The subsurface geology at the site and was created using soil and monitoring well boring logs (Figure 3.2). In general, the saprolite/PWR contact was determined using split-spoon blow counts and the PWR/bedrock contact was estimated based on auger refusal. Based on hand samples collected during monitoring well installation and observations of bedrock outcrops during the geologic field reconnaissance, no evidence of diabase dikes was documented.

3.2 Fracture Trace Analysis

Fracture traces were identified during a desktop analysis of readily available topographic maps, aerial photos, and satellite imagery. Fracture bearings measured during the geologic field reconnaissance were also incorporated into the analysis.

In general, fracture traces tend to be oriented at a consistent angle with the regional structure trend, and in the case of the Piedmont this trend is northeast to southwest (NE-SW). Typically, fracture traces occur in two orthogonal sets that are approximately perpendicular (i.e. one set is oriented north-south [N-S] with a weaker second set oriented east-west [E-W]). Thus streams developed in rocks where fractures exhibit control over surface water features will display a "stair-step" pattern.

The fracture trace bearings were used to construct a rose diagram (Figure 3.3) indicating a dominant north-northwest/south southeast (NNW/SSE) fracture set, with a weaker subparallel east-northeast/west-southwest (ENE/WSW) set. When coupled with the local topography, the fracture patterns suggest that site groundwater flows towards the east-southeast. This is consistent with historical groundwater flow directions for the site determined from depth to water measured in on site groundwater monitoring wells.

3.3 Soil Analytical Results

A total of 30 soil samples were collect from 22 boring locations to evaluate the potential for VOCs impacted soil in the four areas of concern; 1) the Former NCDOT Laboratory and septic tank area; 2) the current asphalt laboratory area; 3) the area adjacent to the former potable water well PW-1; and 4) the septic tank percolation area. Results of the soil samples collected during the investigation are summarized on Table 3.1.

3.3.1 Former North Carolina Department of Transportation Laboratory and Septic Tank Area

Soil borings SB-1 through SB-18 were advanced around the location of the former NCDOT laboratory and septic tank area. Each boring was advanced to DPT refusal (between 14 to 23 ft bls). A total of 24 soil samples were collected in the area. The investigation revealed the following:

- Two out of three NCDOT target compounds were detected in soil samples above their Inactive Hazardous Sites Branch's (IHSB) Protection of Groundwater Soil Remediation Goals (SRGs), including carbon tetrachloride and TCE. TCE was also detected above its IHSB Preliminary Health-Based SRGs
- Three non-NCDOT target compound VOCs were detected above their Protection of Groundwater SRG including 1,2,3-trichloropropane (1,2,3-TCP), benzene, and vinyl chloride (vinyl chloride is a daughter product of TCE). 1,2,3-TCP and bromomethane were detected in soil above their IHSB Preliminary Health-Based SRGs
- TCE was detected in soil samples collected from 9 of 18 borings located near the former NCDOT laboratory. Three soil samples had concentrations of TCE above the IHSB Health-Based SRG of 2,800 micrograms per kilogram (µg/kg) including SB-8 (10-12 ft bls), SB-8 (18-20 ft bls), and SB-14 (16-18 ft bls) with concentrations of 3,320 µg/kg, 5,710 µg/kg, and 2,890 µg/kg, respectively. A TCE isoconcentration map for soil is provided as Figure 3.4.
- The horizontal extent of soil impacted with TCE above its Protection of Groundwater SRG (18 µg/kg) covers an area of approximately 5,500 square feet (110 ft by 50 ft).
- TCE impacted soil extends at least to DPT refusal (up to 23 ft bls) in the central source area. However, elevated TCE concentrations in groundwater immediately down gradient (see section 3-4) suggests TCE impacted soil extends to the water table (approximately 35 ft bls).
- Carbon tetrachloride (7.45 µg/kg) and vinyl chloride (14.9 µg/kg) were detected in one sample collected from boring SB-4 above their Protection of Groundwater SRGs of 2 and 0.19 µg/kg, respectively.
- No VOCs were detected above laboratory reporting limits in soil collected from borings SB-1, SB-2, SB-3, SB-6, SB-9, SB-15, SB-16, SB-17, and SB-18.
- PCE was not detected in soil samples collected near the former NCDOT laboratory.
- 1,2,3-TCP, benzene, and bromomethane are not NCDOT target VOCs. Historically, 1,2,3-TCP was used as a paint and varnish remover, cleaning and degreasing agent, and a cleaning and maintenance solvent (NTP, 2005). Benzene is a natural part of crude oil and gasoline, and is widely used to make plastics, resins, synthetic fibers, lubricants, dyes, detergents, drugs, and pesticides (ATSDR, 2007). Bromomethane is used to kill a variety of pests including rats, insects, and fungi (ATSDR, 1992).

3.3.2 Current Asphalt Laboratory Area

Soil borings SB-20 and SB-22 were advanced at the southwest and southeastern corners of the current laboratory, respectively. Two samples were collected from boring SB-20 at depths of 6-8 ft bls and 12-14 ft bls. Two samples were also collected from boring SB-22 at depths of 6-8 ft bls and 10-12 ft bls. The laboratory results are summarized below:

- PCE was detected in soil samples SB-20 (6-8 ft bls) and SB-20 (12-14 ft bls) with concentrations of 625 µg/kg and 692 µg/kg, respectively. The concentrations exceed the IHSB Health-Based SRG (550 µg/kg) and Protection of Groundwater SRG (5 µg/kg). No other compounds were detected in soil samples SB-20 (6-8 ft bls) and SB-20 (12-14 ft bls).
- Four VOCs were detected in soil samples collected from boring SB-22, including TCE, isopropylbenzene, naphthalene, and sec-butylbenzene. However, the concentration of the four VOCs are below both the Health-Based and Protection of Groundwater SRGs.

3.3.3 Former Potable Water Well Area

Soil boring SB-19 was advanced to 27 ft bls adjacent to the former potable water well PW-1. One sample, SB-19 (20-22 ft bls), was collected for analysis of VOCs. Toluene was the only VOC detected in the sample with a concentration of 9.05 μ g/kg. The concentration of toluene is well below its IHSB Health-Based SRG (820,000 μ g/kg) and Protection of Groundwater SRG (5,500 μ g/kg). No other VOCs were detected above reporting limits.

3.3.4 Septic Tank Percolation Area

Soil boring SB-21 was advanced near the septic tank percolation area on the western side of the Site to 18 ft bls. One soil sample was collected for laboratory analysis at 14-16 ft bls. No VOCs were detected above laboratory reporting limits.

3.4 Site Hydrogeology

Groundwater elevation data collected on June 18, 2010 is presented in Table 2.1 and was used to prepare the groundwater potentiometric surface elevation contour map of the surficial aquifer (Figure 3.5) and shallow bedrock aquifers (Figure 3.6). Groundwater in the surficial and bedrock aquifers flows generally east toward an unnamed tributary of the Haw River.

3.5 Groundwater Analytical Results

Groundwater samples were collected from site monitoring wells in April and July 2010. The analytical results are summarized in Table 3.2. Field parameters, including temperature, DO, pH, conductivity, and ORP were recorded during the sampling events and are presented in Table 3.3.

The following is a summary of the April and July 2010 groundwater monitoring results:

- TCE was detected at concentrations above the North Carolina Administrative Code 2L Groundwater Standard (2L Standard) of 3 micrograms per liter (µg/L) in monitoring wells 48MW-1 (150 µg/L), 48MW-3 (3.5J µg/L), 48MW-15 (15 µg/L), 48MW-16 (1,060 µg/L), and 48DW-2 (42 µg/L). TCE was detected in all three PDB samples deployed in 48DW-5 with concentrations of 313 µg/L, 283 µg/L, and 356 µg/L at depths of 60 ft bls, 80 ft bls, and 100 ft bls, respectively.
- The horizontal extent of the TCE plume exceeding the 2L Standard is defined by the monitoring well network and is within the capture zone of the pump and treat system.
 Isoconcentration maps of TCE in the surficial and bedrock aquifers are presented on Figures 3.7 and 3.8, respectively.
- 1,1,1-TCA was detected in groundwater collected from on-site monitoring wells 48MW-1 (10 μg/L), 48MW-3 (2.0 μg/L), and 48DW-2 (4.9 μg/L), at concentrations below its 2L Standard of 200 μg/L.

- 1,1-dichloroethene (1,1-DCE), a daughter product of both TCE and 1,1,1-TCA, was also detected in groundwater at concentrations above its 2L Standard of 7 µg/L in monitoring wells 48MW-1 (48 µg/L), 48MW-3 (7.1 µg/L), 48MW-15 (9.6 µg/L), 48MW-16 (84.8 µg/L), and 48DW-2 (22 µg/L).
 1,1-DCE was detected above its 2L Standard in all three PDB samples deployed in 48DW-5 with concentrations of 30.2 µg/L (60 ft bls), 27.4 µg/L (80 ft bls), and 28.2 µg/L (100 ft bls).
- 1,1-dichloroethane, a daughter product of 1,1,1-TCA, was detected in monitoring well 48MW 3 with a concentration of 6.5 μg/L, above its 2L Standard of 6 μg/L.
- cis-1,2-Dichloroethene was the only other TCE daughter product detected in groundwater and concentrations were below its 2L Standard. No other daughter products of 1,1,1-TCA were detected in groundwater on-site.
- PCE was detected in groundwater collected from monitoring wells 48MW-1 (9.5 μg/L), 48MW-3 (5.0 μg/L), and 48MW-15 (3.5 J μg/L) at concentrations above its 2L Standard of 0.7 μg/L. According to the NCDOT, PCE was not used during their operation of the asphalt testing laboratory.
- Ethylbenzene, Isopropylbenzene, o-Xylene, and sec-Butylbenzene were detected in groundwater collected from on-site monitoring wells at concentrations below 2L Standards. These non-target NCDOT compounds are commonly associated with petroleum products.
- 1,3,5-Trimethylbenzene and Acetone were detected in groundwater collected from on-site monitoring wells at concentrations below 2L Standards and are non-target compound.

4.0 Conclusions

The average TCE concentration in the groundwater treatment system influent since 2004 (240 µg/L) is more than twice that observed in well MW-1, which has the highest impacts among the Site monitoring wells. The TCE concentration trend in treatment system influent appears to be stable indicating a likely residual TCE source. The disparity between the average influent concentration and that observed in well MW-1 is likely explained by the identification of the TCE impacted soil source area near the location of the former NCDOT laboratory.

The following conclusions were made based on field measurements and laboratory analytical data from the April and July 2010 sampling event and previous sampling events.

- Based on the fracture trace analysis, dominant fracture traces in the area trend NNW/SSE with a weaker ENE/WSW, subparallel set. When coupled with the local topography, these findings indicate that the likely direction of groundwater flow at the site is toward the east-southeast. This is consistent with historical groundwater flow directions for the site determined from depth to water measured in on site groundwater monitoring wells.
- No evidence of diabase dikes was observed during the geologic field reconnaissance nor was evidence diabase observed during drilling monitoring well borings.
- TCE was detected in half of the soil borings located near the former NCDOT laboratory with a maximum concentration of 5,710 µg/kg at SB-8 (18-20 ft bls). The horizontal extent of soil impacted with TCE above its Protection of Groundwater SRG (18 µg/kg) is approximately 5,500 square feet (110 feet by 50 feet) and extends to at least 23 ft bls in the central source area. However, elevated TCE concentrations in monitoring well 48MW-16 immediately down gradient suggests TCE impacted soil extends to the water table (approximately 35 ft bls).
- TCE was not detected in soil above its Health-Based or Protection of Groundwater SRGs in any area other than the former NCDOT laboratory area.
- PCE was detected in soil collected at the southwest corner of the current laboratory above its Health-Based and Protection of Groundwater SRGs. PCE was not detected in soil from any other location during this assessment. In addition, NCDOT records indicate PCE was not used during operation of the former NCDOT asphalt testing laboratory. However, the NCDOT target compound TCE is a daughter product of PCE.
- Groundwater in the surficial and bedrock aquifers flows generally east-southeast toward an unnamed tributary of the Haw River.
- The horizontal extent of the TCE plume exceeding the 2L Standard is generally defined by the monitoring well network and captured by the pump and treat system.
- PCE was detected in groundwater collected from monitoring wells 48MW-1 (9.5 μg/L), 48MW-3 (5.0 μg/L), and 48MW-15 (3.5 J μg/L) at concentrations above its 2L Standard. According to NCDOT, PCE was not used during their operation of the asphalt testing laboratory and could be an additional source of TCE and its daughter products.

5.0 References

- Geraghty & Miller, Inc., Comprehensive Site Assessment, NCDOT Asphalt Testing Site #6-48, 240 Sugar Lake Road, Pittsboro, North Carolina. June 1997.
- NCDENR, 2010, Title 15A North Carolina Administrative Code (NCAC) Subchapter 2L Groundwater Quality Standards. State of North Carolina, NCDENR, Division of Water Quality, Groundwater Section. January 2010.
- S&ME, Inc. 2002. Monitoring Report Former Asphaltic Material Testing Laboratory Sites Site No. 6-48. August 2002.
- S&ME, Inc. 1999. Corrective Action Plan. NCDOT Asphalt Testing Site #6-48, 240 Sugar Lake Road, Pittsboro, North Carolina. June 1999.
- Bradley, P.J., Gay, N.K., Bechtel, R., Clark, T.W., 2077. Geologic Map of the Farrington 7.5-Minute Quadrangle, Chatham, Orange and Durham Counties, North Carolina, North Carolina Geological Survey Open File Report 2007-03.
- United States Environmental Protection Agency (USEPA). 1999. National Functional Guidelines for Organic Data Review.
- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, USEPA-540-R-07-003, July 2008,
- United States Environmental Protection Agency (USEPA) Region IV Environmental Compliance Branch Standard Operating Procedures and Quality Assurance Manual, November 2001.
- NTP, 2005, 1,2,3-Trichloropropane, Report on Carcinogens, Eleventh Edition; U.S. Department of Health & Human Services, Public Health Service, National Toxicology Program, January 2005.
- Agency for Toxic Substances & Disease Registry (ATSDR). 2007. Toxicological Profile for Benzene. Atlanta, GA: U.S. Department of Public Health & Human Services, Public Health Service.
- Agency for Toxic Substances & Disease Registry (ATSDR). 1992. Toxicological profile for bromomethane. Atlanta, GA: U.S. Department of Health & Human Services, Public Health Service.
- Brown, P.M. and others, 1985, Geological Map of North Carolina; North Carolina Department of Natural Resources and Community Development.
- LeGrand, H. E. Sr., 2004. Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina. Prepared for the North Carolina Department of Environment and Natural Resources, Division of Water Quality, Groundwater Section, February 2004.

5-1

Tables

AECOM

Table 2.1Well Construction and Groundwater ElevationNCDOT - Former Asphalt Plant SitePittsboro, North Carolina

Well	Installation Date	Total Depth (ft bgs)	Screened Interval (ft bgs)	Top of Casing Elevation (ft msl)	Depth To water (ft bTOC)	Groundwater Elevation (ft msl)
48MW-1	11/14/1996	50	36-46	405.80	32.99	372.81
48MW-2	11/14/1996	50	40-50	404.41	30.31	374.10
48MW-3	11/14/1996	56	40-50	408.31	33.96	374.35
48MW-4R	11/13/1996	36	26-36	409.33	21.21	388.12
48MW-5	11/12/1996	35	25-35	411.04	22.35	388.69
48MW-10	3/3/1997	40	30-40	405.61	24.61	381.00
48MW-11R	3/31/2004	30	20-30	400.30	28.19	372.11
48MW-12	4/17/1997	37.5	27.5-37.5	383.37	11.62	371.75
48MW-13	4/17/1997	32.5	22.5-32.5	378.28	9.36	368.92
48MW-14	4/1/2000	27.5	22.5-27.5	393.49	19.28	374.21
48MW-15	2/6/2002	13.6	3.6-13.6	380.81	9.00	371.81
48MW-16	6/9/2010	45	35-45	410.44	37.17	373.27
48MW-17	6/9/2010	35	25-35	402.92	14.90	388.02
48DW-1	1/15/1997	100	63-100*	405.29	1.95	403.34
48DW-2	4/24/1997	66	43-66*	402.48	29.78	372.70
48DW-3	7/26/1999	125	115-125	399.26	26.31	372.95
48DW-4	2/18/2002	125	115-125	381.79	11.24	370.55
48DW-5	6/9/2010	102	43-102*	407.80	34.51	373.29

Notes:

bgs - below ground surface.

ft - feet.

bTOC - below top of casing.

msl - mean sea level.

*Open-rock well from the bottom of the surface casing to the bottom of the borehole.

All groundwater measurements were collected on June 18, 2010.

Table 3.1 Summary of Soil Analytical Results NCDOT - Former Asphalt Plant Site Pittsboro, North Carolina

Sample I	D Preliminary	Protection of	SB-1	SB-2	SB-3		SB-4		SB-5	SB-6	SE	3-7		SB-8		SB-9	SB-10	SB-11	SB-12	SB-13	SB	-14	SB-15	SB-16	SB-17	SB-18	SB-19	SB	-20	SB-21	SB	-22
Depth (ft bls	s) <mark>Health-Based</mark>	Groundwater	(8-10)	(10-12)	(6-8)	(4-6)	(12-14)	(20-22)	(14-16)	(12-14)	(8-10)	(14-16)	(10-12)	(14-16)	(18-20)	(12-14)	(8-10)	(12-14)	(4-6)	(14-16)	(10-12)	(16-18)	(12-14)	(6-8)	(20-22)	(8-10)	(20-22)	(6-8)	(12-14)	(14-16)	(6-8)	(10-12)
Constituent (µg/kg)																														Ţ		
1,1,1-Trichloroethane	640000	1200	<6.28	<6.18	<6.47	16.2	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,1,2-Trichloroethane	1100		<6.28	<6.18	<6.47	394	<64.6	<5.62	<5.11	<5.86	<29.6	14.9	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,2,3-Trichloropropane	5	0.03	<6.28	<6.18	<6.47	87	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,2,4-Trimethylbenzene	12000	6700	<6.28	<6.18	<6.47	256	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,3,5-Trimethylbenzene	160000	6700	<6.28	<6.18	<6.47	86.9	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Acetone	12000000	24000	<62.8	<61.8	<64.7	<82.3	5710	<56.2	<51.1	<58.6	<740	<50.9	<6100	<2710	<1430 0	<68.8	<1610	<78.5	<80.7	<1250	<1410	<5410	<50.5	<96.9	<57.1	<66.7	<71.5	<1670	<1430	<65.3	<63.5	<59.9
Benzene	1100	7.30	<6.28	<6.18	<6.47	<8.23	341	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromobenzene	59000		<6.28	<6.18	<6.47	<8.23	25.7	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromochloromethane			<6.28	<6.18	<6.47	<8.23	11.8	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromodichloromethane	270		<6.28	<6.18	<6.47	<8.23	255	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromoform	62000		<6.28	<6.18	<6.47	<8.23	995	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromomethane	1500		<6.28	<6.18	<6.47	<8.23	2890	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Carbon disulfide	160000	3800	<6.28	<6.18	<6.47	<8.23	28.5	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Carbon tetrachloride	250	2	<6.28	<6.18	<6.47	<8.23	7.45	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Chlorobenzene	59000	450	<6.28	<6.18	<6.47	<8.23	23.4	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Chloroethane	2100000	16000	<6.28	<6.18	<6.47	<8.23	9.5	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Isopropylbenzene			<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	7.45
m,p-Xylene	390000	6000	<12.6	<12.4	<12.9	3320	<129	<11.2	<10.2	<11.7	<59.2	<10.2	<488	<217	<1140	<13.8	<129	<15.7	<16.1	<99.9	<113	<433	<10.1	<19.4	<11.4	<13.3	<14.3	<134	<114	<13.1	<12.7	<12
Methyl ether ketone	5600000	16000	<31.4	<30.9	<32.4	<41.1	9.05	<28.1	<25.6	<29.3	<740	<25.5	<6100	<2710	<1430 0	<34.4	<1610	<39.2	<40.3	<1250	<1410	<5410	<25.3	<48.5	<28.5	<33.3	<35.7	<1670	<1430	<32.6	<31.7	<30
Naphthalene	3600	210	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	23.4
n-Butylbenzene		4300	<6.28	<6.18	<6.47	<8.23	625	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
o-Xylene	430000	60000	<6.28	<6.18	<6.47	897	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
sec-Butylbenzene		3300	<6.28	<6.18	<6.47	<8.23	692	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	48	28.5
tert-Butylbenzene		3400	<6.28	<6.18	<6.47	<8.23	48	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Tetrachloroethene	550	5	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	625	692	<6.53	<6.35	<5.99
Toluene	820000	5500	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	9.05	<66.9	<57.2	<6.53	<6.35	<5.99
Trichloroethene	2800	18	<6.28	<6.18	<6.47	120	394	29	87	<5.86	256	86.9	3320	897	5710	<6.88	341	25.7	11.8	255	995	2890	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	9.5
Trichlorofluoromethane	160000	24000	<6.28	<6.18	<6.47	29	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Vinyl chloride	60	0.19	<6.28	<6.18	<6.47	14.9	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99

Notes:

All samples were analyzed for volatile organic compounds by USEPA method 8260b.

Only detected compounds shown.

Samples were collected in April 2010.

µg/kg - micrograms per kilogram.

-- - no standard.

< - constituent detected below the laboratory reporting limit shown.

Bold - constituent detected above the laboratory reporting limit.

Constituent detected concentration exceeds North Carolina Department of Environmental and Natural Resources, Inactive Hazardous Sites Branch, Preliminary Health-Based Remediation Soil Goals (January 2010). Constituent detected concentration exceeds North Carolina Department of Environmental and Natural Resources, Inactive Hazardous Sites Branch, Protection of Groundwater Remediation Soil Goals (January 2010).

ΑΞϹΟΜ

Table 3.2Summary of Groundwater Analytical ResultsNCDOT - Former Asphalt Plant SitePittsboro, North Carolina

Analyte	2L Standard	48MW-1	48MW-2	48MW-3	48MW-4R	48MW-5	48MW-10	48MW-11R	48MW-12	48MW-13	48MW-14	48MW-15	48MW-16	48MW-17	48DW-1	48DW-2	48DW-3	48DW-4	(60 ft bls)	48DW-5 (80 ft bls)	(100 ft bls)
		04/27/10	04/26/10	04/26/10	04/26/10	04/27/10	04/27/10	04/27/10	NA	04/27/10	04/27/10	04/27/10	07/06/10	04/26/10	04/26/10	04/27/10	04/27/10	04/27/10	07/09/10	07/09/10	07/09/10
1,1,1-Trichloroethane	200	10	<5.0	2.0 J	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	4.9 J	<5.0	<5.0	<20	<20	<20
1,1-Dichloroethane	6	4.7 J	<5.0	6.5	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.0 J	<80	<1	<5.0	5.7	<5.0	<5.0	<20	<20	<20
1,1-Dichloroethene	7	48	<5.0	7.1	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	9.6	84.8	<1	<5.0	22	<5.0	<5.0	30.2	27.4	28.2
1,3,5-Trimethylbenzene	400	<5.0	<5.0	<5.0	<5.0	2.6 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Acetone	6000	<50	<50	<50	<50	<50	<50	<50	NS	9.8 J	<50	<50	<2000	<25	21 J	<50	<50	<50	<500	<500	<500
cis-1,2-Dichloroethene	70	3.4 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.4 J	<80	<1	<5.0	7.4	<5.0	<5.0	<20	<20	<20
Ethylbenzene	600	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	0.46 J	<20	<20	<20
Isopropylbenzene	70	<5.0	<5.0	<5.0	<5.0	1.9 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
o-Xylene	500	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	3.0 J	<20	<20	<20
sec-Butylbenzene	70	<5.0	<5.0	<5.0	<5.0	2.7 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Tetrachloroethene	0.7	9.5	<5.0	5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.5 J	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Trichloroethene	3	150	<5.0	3.5 J	<5.0	<5.0	<5.0	2.0 J	NS	<5.0	<5.0	15	1060	<1	<5.0	42	<5.0	2.2 J	313	283	356

Notes:

All samples were analyzed for volatile organic compounds by USEPA method 8260b.

2L Standard- Title 15A North Carolina Administrative Code (NCAC) Subchapter 2L Groundwater Quality Standards (January 2010).

J - estimated value detected below reporting limits and above the method detection limit.

< - constituent was not detected above the quantitation limit.

NS - Well not sampled. Water level too low to sample.

All results are reported in micrograms per liter (µg/L).

Constituents detected above NCAC 2L Groundwater Standard are shaded.

ΑΞϹΟΜ

Table 3.3 Summary of Field Parameters NCDOT - Former Asphalt Plant Site Pittsboro, North Carolina

Monitoring Well	Sampling Date	Temperature (⁰C)	pH (SU)	Dissolved Oxygen (mg/L)	Specific Conductivity (umhos/cm)	Oxidation- Reduction Potential (mV)
48MW-1	04/27/10	17.43	6.18	<mark>0.40</mark>	261	101.1
48MW-2	04/26/10	18.34	5.81	1.93	187	111.8
48MW-3	04/26/10	17.82	6.13	1.10	251	130.9
48MW-4R	04/26/10	18.36	5.80	1.86	349	147.7
48MW-5	04/27/10	19.92	6.06	1.18	310	-54.6
48MW-10	04/27/10	17.98	5.63	1.75	130	230.9
48MW-11R	04/27/10	15.27	6.37	5.97	192	212.3
48MW-13	04/27/10	16.21	7.22	3.21	385	155.7
48MW-14	04/27/10	16.40	6.72	4.84	233	82.7
48MW-15	04/27/10	14.08	6.00	0.77	231	93.8
48MW-16	07/09/10	19.05	5.98	<mark>0.33</mark>	192	303.4
48MW-17	07/09/10	15.86	4.07	2.09	200	442.5
48DW-1	04/26/10	21.74	6.37	0.68	74	160.7
48DW-2	04/27/10	15.82	7.10	1.08	399	239.7
48DW-3	04/27/10	16.36	7.89	0.40	261	154.7
48DW-4	04/27/10	15.63	7.88	1.33	294	-10.7

Notes:

°C - degrees Ceslius mg/L - milligrams per liter mV - millivolts SU - standard units umhos/cm - microsiemens per centimeter Figures

BIO SOIL SAMPLE LOCATION MAP Former NCDOT Asphalt Testing Site No. 6-48 AECOM North Carolina, Inc. Sugar Lake Road, Pittsboro, North Carolina AECOM North Carolina, 27615		
BIO SOIL SAMPLE LOCATION MAP No.: DESCRIPTION: Drawn BY: KLR KLR CHECKED BY: Sugar Lake Road, Pittsboro, North Carolina	;	
0 III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DATE:	BY:
Image: Sugar Lake Road, Pittsboro, North Carolina RALEIGH, NORTH CAROLINA 27615	=	
	$ \rightarrow $	
SCALE: DATE: PROJECT NUMBER: FAX: (919) 872-7996 APPROVED BY: 1"=30' 9/21/10 60154105.6 WEB: HTTP://WWW.AECOM.COM Image: Comparison of the second seco		

HORIZONTAL SCALE: 1" = 80' VERTICAL SCALE: 1" = 20' VERTICAL EXAGGERATION: 4X		HAW RIVER HAW RIVER (38) (38) (39) (39) (30) (30) (30) (30) (30) (30) (30) (30
		DESIGNED BY: REVISIONS
	GEOLOGIC CROSS SECTION A-A'	DRAWN BY:
		KLR
	Former NCDOT Asphalt Testing Site No. 6-48	AECOM North Carolina, Inc.
	Sugar Lake Road, Pittsboro, North Carolina	PHONE: (919) 872-6600
	1"=80' 9/21/10 60154105.6	WEB: HTTP://WWW.AECOM.COM

t t t	AS-1 VIE-2 VE-2 VE-3 VE-3		GRAVEL
FIGURE NUMBER: 3,4 SHEET NUMBER: C100415B	SOIL TCE ISOCONCENTRATION MAP JUNE 2010 Former NCDOT Asphalt Testing Site No. 6–48 Sugar Lake Road, Pittsboro, North Carolina SCALE: DATE: PROJECT NUMBER: 1"=30' 9/21/10 60154105.6	AECOM North Carolina, Inc. RALEIGH, NORTH CAROLINA 27615 PHONE: (919) 872-6600 FAX: (919) 872-7996 WEB: HTTP://WWW.AECOM.COM	IESIGNED BY: REVISIONS NO.: DESCRIPTION: DATE: BY: DRAWN BY: KLR KLR CHECKED BY: CHECKED B

Appendix A

Aerial Photographs

4/1/1977

Appendix B

Boring Logs

\$	w-16	48 M	NC DOT					Client: Project N				
			Pittsboro, North Carolina	ike Road, I	240 Sugai		ation:	Site Loca	1	ON	EC	Δ
		Sheet:	Elevation:	1	IN HCA +	1. 113E"	ates:	Coordina				
: 7es 5	instatiea.	Monitoring Well	Paulina Diamatani	r hummer	UISAN Y	21.4.2	Methoa Tura (a)	Drilling .				
<u> </u>	115'	Danah of Baning	Data/Time Stantad	1	I I D	~ 20	Type(s):	Sample I			-	Vandlan
	-15	Watar Loval	Logged By: M.D. 1 Date/Time Started: - Depth of Bor							1041	Contrao	willing
		Truter Level.	Duter time Pinishea.		Ground Eleval						<u></u>	muung
Lab Sample	Lab Sample ID	ENT, minor ximum grain size,	lor, size, range, MAIN COMPO content, structure, angularity, m , and Geologic Unit (If Known)	IALS: Co moisture odor	MAT component(U.S.C.S	Headspace (ppm	Recovery (inches	Blows per 6"	Sample Depth (ft	Geologic sample I	Depth (TU)
	5	red Superide	n SILT witchay, no preserve, dry	h-brow textu	65-7 or:	mi		15	3-4 7		9 4	
		+CLAY	ye SILT w/minor SANL z texture, dry	vish-orn Suprolit	10-12. ye P	ML		18/-	56-6		SAP	
			SILT, dry	rist-tur	15-17 yea	ML		146/ /14	7-840		sh ^p	
		v vertical	W/preserved weathered, ne which suprolite, dry	above actives i	20-22-1	ML		19,	4-5-5		SA	
		' SILT	ge SANPOR Fine SAND 7	wish-onu PWR,d	25-27 ¥			12/18	家山		PWR	
		I PWR 3.	range Meta volkanic rack zerse gravel rock fraguen	lowish or and to ci lsy	30-32				25-5%		pwr	
			~5 ~) 1)	PWR WR(or uck (gr	#33-3 36-37 37-40						Jul vet	
	•	ing	ruge) rug dist)	NR los oct (g	40-41 41-45							·
												*
					-16							
ng	r while drillin	e Depth to groundwate	Date Ti		615 213	1 2341 331	0	Refish	HSA 1	25 [#] 10	s: 4,7	NOTE
								Λ	7			
								$\sum I_{i}$	M			

				Client			NCDOT		
				Project	Numher	:		48-MW.4	8 14
		<u> </u>		Site Loc	ation:	-	240 Sugar Lake Road, Pittsboro, North Carolina		
Α	ΞC	ОЛ	Λ	Coordin	ates.		Flevation:	21.	
			-	Drilling	Mothad	1. 475"	In HSA the Land	nitoring Wall Inc	talled.
				Sample	Tunala		Revive Dispetant Course	anoring reli 1115	15_35
Want.				Sample	iype(s):		Doring Diameter: Scree	th of Ponis-	<u>~</u> ? ⊆
weather	<u> </u>		CEY				Loggea by: Date/Time Started: Dep	an of boring:	
Drilling	Contrac	tor:	GEX				Ground Elevation: Date/Time Finished: Wat	er Level:	
Depth (ft)	Geologic sample II	Sample Depth (ft)	Blows per 6"	Recovery (inches)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size, range, MAIN COMPONENT, 1 component(s), moisture content, structure, angularity, maximun odor, and Geologic Unit (If Known)	minor 1 grain size,	Lab Sample ID Lab Sample Depth (Ft.)
	<i>Ş.</i> Ų		6-6-7	18/		m	5-75Reddohoninge SILTY CLAY soil, dry		
	Sep		7-7-8	18/18		ML	10-11-5 14 yellowist orring SILT w/ when san dry	d	
	54		7-y-K	18, /18		me	15-16.5 Hgrap to yellowish orange SILT say	prolite.	
	PWR		2045g	15/		sn	20-21.5 Hyperish gray to yellerish orange fine SAND #/SILT FWR		
	-		د ۲۰	-			21-27 It been RWR dist whys 27-33 It gray rock dist cuttings, dry 33-35 It gray send cuttings, net		
	-								
					•				
		«" IN	HSA .	المديركم	Q.	21'61	Date Time Dep	th to groundwater wh	nile drilling
NOTE	ES: 4.7	່ມ່	trane 1		101	1.	•		
	Ver	04h to	water	6	いいり	טס.			
		Checked	hv			Date			
L		Спескед	<u>.</u>			Date:	,		

~>

48DW-5

		2.11		Client:	λ <i>Γ</i> , 7		NC DOT	71	1	11
				Site Lo	<u>Number</u> cation:		241) Sugar Lake Road Pittsborg North Caroling	- Τγρε4	t w	11
A		O	Ν	Coordi	nates:		Elevation:	Sheet.		
-				Drilling	g Methoa	1: 4.25	5" 10 HSA & Air hum	Monitoring Well	Installed:	
	<u> </u>	·. · · · · ·		Sample	Type(s):		Boring Diameter:	Screened Interva	1:	
Weather	: 		CEV			.	Logged By: Date/Time Started:	Depth of Boring:		
Drilling	<u>Contra</u>	$\frac{cior:}{2}$	GEX				Ground Elevation: Date/Time Finished:	Water Level:	-	
Depth (ft)	Geologic sample]	Sample Depth (f	Blows per 6"	Recovery (inches	Headspace (ppm	U.S.C.S	MATERIALS: Color, size, range, MAIN COMPON component(s), moisture content, structure, angularity, ma odor, and Geologic Unit (If Known)	ENT, minor ximum grain size,	Lab Sample ID	Lab Sample Depth (Ft.)
							0-27'bls Suprolitie 27-34'bls RWR 34-38'bls Rock 38-40'bls PWR/Frictie zone (White 40-43'bls PWR/Frictie zone (White 43-52'bls Unfinited Poch, noch dust, It 143-52'bls Unfinited Poch, noch dust, It 143-53'bls Water Friedres; ## gray Water, 58'-61'bls Water Friedres; Water changed H gray to It Brown a increasel, soft Zone 102'bls Minor Water Friedre, Weder turnel 80-102'bls No Friedres observed	concort @ 416 gray a dost color trom funcement rete of needbool ator. brown	B)	
										,
NOTES	81776	25"1D 8" air	HSA R hanner hanner	efusn) From From	Q 20 29 to 2 43'to	1'6 5 13'6 5 102'6 5	Date Time	Depth to groundwater t	vhile drilling	
		01				_				
		inecked by	·		I	Date:				

Ś

Appendix C

Well Construction Records

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

1. WELL CONTRACTOR:	
JASON MANTAK	d. TOP OF CASING IS <u>3.0</u> FT. Above Land Surface*
Well Contractor (Individual) Name	a variance in accordance with 15A NCAC 2C .0118.
GEOLOGIC EXPLORATION INC	e. YIELD (gpm): N/A METHOD OF TEST N/A
Well Contractor Company Name	f. DISINFECTION: Type N/A Amount N/A
STREET ADDRESS 176 COMMERCE BLVD	g. WATER ZONES (depth):
	FromToTo
City or Town State Zip Code	FromToToTo
/ 704 \ 872-7686	FromToToTo
Area code- Phone number	6. CASING: Thickness/
2. WELL INFORMATION:	Depth Diameter Weight Material
SITE WELL ID #(if applicable) 48-MW-16	From To 5t
STATE WELL PERMIT#(if applicable)	From To Et.
DWQ or OTHER PERMIT #(if applicable)	7 GBOUT: Dopth Material Mathematic
WELL USE (Check Applicable Box) Monitoring Municipal/Public	
Industrial/Commercial Agricultural Recovery Injection	From To 50.0 Ft. Fortuan benchnee SLURRY
Irrigation Other (list use)	From10Ft
DATE DRILLED 06/09/10	
	8. SCREEN: Depth Diameter Slot Size Material
3. WELL LOCATION:	From 35.0 To 45.0 Ft. 2.0 in. 0.10 in. PVC
CITY: PITTSBORO COUNTY CHATHAM	From10Ftinin
240 SUGAR LAKE ROAD 27312	
(Street Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code)	9. SAND/GRAVEL PACK: Depth Size Material
	From 33.0 To 45.0 Ft. 20-40 FINE SILICA SAND
Check appropriate box)	FromToFt
May be in degrees	FromToFt
minutes, seconds or	10. DRILLING LOG
LONGITUDE In a decimal format	From To Formation Description
Latitude/longitude source:	0.0 15.0 ORANGE CLAY
(location of well must be shown on a USGS topo map and attached to this form if not using GPS)	15.0 32.0 TAN SILTY CLAY
4. FACILITY- is the name of the business where the well is located	36.0 37.0 BROWN PARTIALLY WEATHERED ROCK
FACILITY ID #(if applicable)	37.0 40.0 GRAY ROCK
NAME OF FACILITY ST WOOTEN	40.0 41.0 TAN SILTY CLAY
STREET ADDRESS 240 SUGAR LAKE ROAD	41.0 45.0 GRAY ROCK
PITTSBORO NC 27312	
City or Town State Zip Code	
CONTACT PERSON NCDOT	
RALEIGH NC 27606	11 DEMADKS
City or Town State Zip Code	BENTONITE SEAL FROM 30.0 TO 33.0 FT
()-	
Area code - Phone number	
5. WELL DETAILS:	I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH
a. TOTAL DEPTH: 45.0 FEET	RECORD HAS BEEN TROVIDED TO THE VIELL OF NER.
	SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE
(Use "+" if Above Top of Casing:FT.	JASON MANTAK
	PRINTED NAME OF PERSON CONSTRUCTING THE WELL

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

d. TOP OF CASING IS 3.0 FT. Above Land Surface*
*Top of casing terminated at/or below lond autoco
op or casing terminated avor below land surface may require
- a variance in accordance with 15A NCAC 2C .0118.
e. YIELD (gpm): <u>N/A</u> METHOD OF TEST <u>N/A</u>
f. DISINFECTION: Type_N/A Amount_N/A
g. WATER ZONES (depth):
- From To To
- FromTo ToTo
FromToToTo
6. CASING: Thickness/
Depth Diameter Weight Materi Erom 0.0 To 25.0 Et 2 INCH SCH 40 PVC
From To Ft
0.0 _ 18.0 _ Portland bentonite SUIRRY
FromIoFt
From To Ft
6. SCREEN. Depth Diameter Slot Size Mater
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
From To Et in in
le) Depth Size Material
From 22.0 To 35.0 Ft. 20-40 FINE SILICA SAND
From To Ft.
From To Formation Description
0.0 10.0 ORANGE CLAY
10.0 20.0 TAN SILTY CLAY
20.0 35.0 GRAY ROCK/TAN SILTY CLAY LAYERS
11. REMARKS:
BENTONITE SEAL FROM 18.0 TO 22.0 FT
TEA NEAD 20 WELL CONTRICT THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE V
TO A INCAC 2C, WELL CONSTRUCTION STATIDADES, AND THAT A COPY OF THIS
IDA INCAC 20, WELL CONSTRUCTION STATUEDEDS, AND THAT A COPY OF THIS RECORD HAS DEEN PROVIDED TO THE WELL OWNER,
BAINCAC 20, WELL CONSTRUCTION STATCHES, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO HE WELL OWNER. SIGNATURE OF CERTIFIED WELL CONTRACTOR
IDA INCAC 2C, WELL CONSTRUCTION STATUCES, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO HE WELL OWNER. SIGNATURE OF CERTIFIED WELL CONTRACTOR JASON MANTAK
] od

depth): From To From____ _ To___ From____ ___ To__ Thickness/ Weight SCH 40 Material Ft Ff Material Method Portland bentonite .0 SLURRY Ft. Ft. _Ft. Diameter Slot Size Material in. PVC 0. Ft. 2.0 in. .010 Ft. _in. in. _in. _ Ft. _ in. K: Size Material 5.0 Ft. 20-40 FINE SILICA SAND Ft. Ft. Formation Description ORANGE CLAY TAN SILTY CLAY GRAY ROCK/TAN SILTY CLAY LAYERS 18.0 TO 22.0 FT IS WELL WAS CONSTRUCTED IN ACCORDANCE WITH CTION STANDARDS, AND THAT A COPY OF THIS OWNER. 06/11/10 IED WELL CONTRACTOR DATE

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center - Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

1										
	1. WELL CONTRACTOR:	d. 1								
	JASON MANTAK	*								
	Well Contractor (Individual) Name									
	GEOLOGIC EXPLORATION, INC.	e. `								
	Well Contractor Company Name	f.								
	STREET ADDRESS 176 COMMERCE BLVD	g.								
	STATESVILLE NC 28625									
	City or Town State Zip Code									
	<u>(704)</u> - <u>872-7686</u>									
	Area code- Phone number 2. WELL INFORMATION:	6. CA								
	SITE WELL ID #(if applicable)48-DW-5	Fr								
	STATE WELL PERMIT#(if applicable)	Fr								
	DWQ or OTHER PERMIT #(if applicable)									
	WELL USE (Check Applicable Box) Monitoring 🗹 Municipal/Public 🗆	7. G								
	Industrial/Commercial 📋 Agricultural 🔲 Recovery 🗖 Injection 🗔	Fr								
	Irrigation Other 🛛 (list use)	Fr Fr								
	DATE DRILLED 06/09/10 - 06/10/10	⊢r								
		8. S								
	3. WELL LOCATION:	Fr								
	CITY: PITTSBORO COUNTY CHATHAM	Fr								
	240 SUGAR LAKE ROAD 27312									
	(Street Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code)									
	TOPOGRAPHIC / LAND SETTING:	Fr								
	Slope Valley Flat Ridge Other	Fr								
	(Check appropriate box)	Fr								
	LATITODE minutes, seconds or	10. DR								
	LONGITUDE in a decimal format	Fror								
1	Latitude/longitude source: □GPS □Topographic map	<u>0.0</u>								
	(location of well must be shown on a USGS topo map and attached to this form if not using GPS)	<u>15.0</u> 34.0								
	4. FACILITY- is the name of the business where the well is located.	38.0								
	FACILITY ID #(if applicable)	40.0								
	NAME OF FACILITY_ST WOOTEN									
	STREET ADDRESS 240 SUGAR LAKE ROAD									
	PITTSBORO NC 27312									
	City or Town State Zip Code									
	CONTACT PERSON_NCDOT									
	MAILING ADDRESS 4809 BERYL ROAD									
	RALEIGH NC 27606	11. RE								
	City or Town State Zip Code	OPENI								
	()									
	5. WELL DETAILS:	15A NCA								
	b. DOES WELL REPLACE EXISTING WELL? YES D NO	SIGNA								
	c. WATER LEVEL Below Top of Casing: <u>35.0</u> FT.	JAS								
L		PRINT								

d. TOP OF CASING IS	3.0 FT. Above Land Surface*
a variance in accordan	ace with 15A NCAC 2C .0118.
e. YIELD (gpm): <u>N/A</u>	METHOD OF TEST N/A
f. DISINFECTION: Typ	e_N/AAmount_N/A
g. WATER ZONES (dep	oth):
FromTo	From To
FromTo	From To
FromTo	From To
6. CASING:	Thickness/
Depth From 0.0 To 43.0	Diameter Weight Material Ft. 6 INCH SCH 40 PVC
FromTo	Ft
FromTo	Ft
7. GROUT: Depth	Material Method
From 0.0 To 43.0	Ft. Portland bentonite SLURRY
From To	
FromTo	Ft
8. SCREEN: Depth	Diameter Slot Size Material
FromTo	Ftinin
From To	Ht In In
9. SAND/GRAVEL PACK: Depth	Size Material
FION	
From To	FL
10. DRILLING LOG From To 0.0 15.0 15.0 34.0 24.0 28.0	Formation Description ORANGE CLAY TAN SILTY CLAY BROWN PARTIALLY WEATHERED ROCK
<u>38.0 40.0</u>	TAN SILTY CLAY
40.0 100.0	GRAY ROCK
·	
· · · · · · · · · · · · · · · · · · ·	
11. REMARKS: OPEN HOLE FROM 43.0 TO 1	100.0 FT
I DO HEREBY CERTIFY THAT THIS 15A NCAC 20 WELL CONSTRUCT RECORD HAS BEEN PROVIDED	WELL WAS CONSTRUCTED IN ACCORDANCE WITH ON STANDARDS, AND THAT A COPY OF THIS THE FELL OWNER. 06/11/10
SIGNATINE OF CERTIFIED	D WELL CONTRACTOR DATE
JASON MANTAK	
PRINTED NAME OF PERSO	ON CONSTRUCTING THE WELL

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Appendix D

Groundwater Sample Collection Records

Well ID: 48DW -1

Client: NCDOT - Pittsboro	Date	e:4/	1 /2010	Tin	ne: Start 3	<u>ෘත</u> am/pm
Project No: 6015	4105.3				Finish	<u>50</u> am/pm
Site Location: Pittsboro, NC			\sim	-		
Weather Conds: ~ 80° Y Sunny		lector(s):	<u> </u>	. Babineau/	B.Bennett	
1. WATER LEVEL DATA: (measured from Top a. Total Well Length 28 , 74 c. Length of V	of Casing) Vater Colum	in <u>%</u> .H	(a-b)		Casing Diam	eter/Material
b. Water Table Depth 2. Co. d. Calculated	System Volu	u me (see ba	ck) <u>140</u>	.369	6"2"	PVC Muta
2. WELL PURGE DATA a. Purge Method: , Peristaltic/Monsool/Grund	fus				فر	
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. - pH <u>+</u> 1.0 unit - ORP - Sp. Cond. 3% - Drawdown	10% <u>+</u> 10mV < 0.3'					
c. Field Testing Equipment used: Ma	ke I		Model 556		Serial 1392	Number
	terre terres					
Time Removed Temp. pH Spec. Cond. (24hr) (Liters) (°C) (µS/cm)	DO (mg/L)	ORP T	urbidity <u>F</u> (NTU)	low Rate	Drawdown (feet)	Color/Odor
1310 3L 1279 6.17 74	0.79	163.1	U/A	150	3.10	douty/war
1313 41 20.56 6.24 73	0.75 1	71.4	\rightarrow	·	3.15	dospluse
1)16 52 20.99 6.33 74	0.69 1	<u> </u>	+		2.19	clouture
$\frac{1312}{12}$ $\frac{62}{72}$ $\frac{1312}{72}$ $\frac{62}{72}$ $\frac{1312}{74}$ $\frac{627}{73}$ $\frac{1312}{74}$ $\frac{1312}{72}$ $\frac{1312}{74}$ $\frac{1312}{72}$ $\frac{1312}{74}$	0.60 /3 D.68 /0	$\frac{50.9}{0.2}$	++-		3.21	de day june
	0100 10		+			and with
			V	V	•	
d. Acceptance criteria pass/fail Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.					:	(continued on back)
3. SAMPLE COLLECTION: Method: 6-0	ß		· · · · · · · · · · · · · · · · · · ·			
Sample ID Container Type No. of Contai 48 Du -) 40ml VOA 3	ners	Preserva HCl	Ition	Analysi	s Req. 8260B	Time 1330
	·			· - <u>-</u>		
Comments well scumpted 0, low Sample on 4/22/10	flow then	Purp	ad Dr	ry-n	.11 take	and
	4		·····			
Signature School				Date	4/26/10	5
-						

Client:	NCDOT	- Pittsboro	0		I	Date:	4/ 26 /2010	Ti	me: Start <u>I</u>	3 <u>50</u> am/pm
Project N Site Loca	io: Pion: Pi	ttshora N	JC	60	154105.3				Finish <u>F</u>	<u>>∽∽o</u> am/pm
Neather	Conds:	~80"	~ 50 m	γ		Collector(s)	:	D. Babineau	I/B.Bennett	
1. WATI	ER LEVEL	DATA:	(measu	red from To	op of Casir	ng)		\bigcirc		
a. To	tal Well Le	ngth	.74_	c. Length o	f Water Co	lumn <u>96,14</u>	(a-b)		Casing Diar	neter/Material
b. Wa	ater Table	Depth 9	2,60	d. Calculate	ed System	Volume (see	back) /4	0.36	2'	PVC
2 WELL	PURGE		pz				<u> </u>	· · · · · · · · · · · · · · · · · · ·	~	
a. Pu	rge Metho	d:Peri	staltic/ N	Aonsoon/ Gru	ndfus	- Full	Purae) OE	nell	
b. Ac	ceptance (Criteria d	efined (see workpla	1)		-0-			
- Ten	nperature	3%		-D.O.	10%					
- pH	Oraci	<u>+</u> 1.	.0 unit	- ORP	<u>+</u> 10n	nV				
- Sp.	Cond.	3%		- Drawdow	n < 0.3					
c. Fie	ld Testing	Equipme	ent usec	1: N	/lake		Model		Seria	Number
				· · · · · · · · · · · · · · · · · · ·	YSI		556		157	60
	Volume		_	· · · · ·					····	
Time (24br)	Removed	<u>Temp.</u>	<u>Hq</u>	Spec. Conc	$\frac{1}{100}$	ORP (m)()	Turbidity	Flow Rate	Drawdown	Color/Odor
1415	·N/A	12.12	7.04	81	0,78	125.3	N/A	>300	35.62	dendator
1430	80 g	18.61	6.71	70	0.74	158.3			45.40	dofum
<u>1445 -</u> 1500	160-9	19,00	6.70	<u>72</u>	0.70	161.7			59.61	dentinone
1315	1182	19.28	7.34	72	0.79	197.3			0 79	Clearly one
1530	1307	19,40	7.19	71	0,80	194.2			91.00	Cleurland
545							1	1		
ク d. Ac	ceptance of	criteria pa	ass/fail	mound	Yes N	o N/A ⊐ 4≹⊐	۱.			(continued on back)
па На	is required	turbidity	been re	moved eached						
Ha	ive parame	eters stat	oilized							
	If no or N	/A - Expl	ain belo	w.						
-						. <u> </u>		- <u> </u>	······································	
		ECTION	• N	lethod:						·
			• ••	iethiod				· · · · · · · · · · · · · · · · · · ·		
Sample II	D Co	ontainer	Туре	No. of Con	tainers	Prese	vation	Analys	is Req.	Time
		-40mi VL	100			H			7200B	<u></u>
										
							· · · · · · · · · · · · · · · · · · ·			
Commen	ts	PUR	he o	Furst	only	- Wel	1 Ne	, at	1540	
			ر ر	· · · · · · · · · · · · · · · · · · ·	1					
		<u></u>								
		-				······································		_		
		\sim 2			1000 - 100 - 10 - 1					

Well ID: 48 DW-2

·				· · · · · · · · · · · · · · · · · · ·							
Client:	NCDOT -	Pittsbo	ro		[Date:	4/27/	2010	Ti	me: Start <u>Ø</u>	1 <u>30</u> am/pm
Project N	o:			60	154105.3					Finish (p	s am/pm
Site Loca	tion: <u>Pit</u>	tsboro,	NC								
Weather	Conds:	~650	+ Sun	m		Collector(s):]	D. Babineau	I/B.Bennett	
1. WATE		DATA:	(measu	/ ired from To	p of Casir	ng)					6 · ·
a. Tot	al Well Ler	ngth_ <u>66</u>	6.00	c. Length of	Water Co	lumn <u>36,4</u>	<u>'7 (</u> (a-b)		Casing Diam	neter/Material
b. Wa	ter Table I	Depth 🕯	9.53	d. Calculate	d System '	Volume (see	e back)	5	3.24 g	<u>6 %</u>	PSC metal
2. WELL a. Pur	PURGE E ge Method	DATA I:, Per	ristaltic/	Monsoon Gru	ndfus						
b. Acc - Tem - pH - Sp. (eptance C perature Cond.	riteria (3% <u>+</u> 1 3%	defined (.0 unit	(see workplar -D.O. - ORP - Drawdown	10% <u>+</u> 10n 1 < 0.3	nV					
c. Fiel	d Testing I	Equipm	ent use	d: N	lake (SI	Model 556				Serial 13968	Number
			_								·
Time	Volume	Tomp	<u>_</u>	Shop Cond			Turk	ditu	Elow Doto	Droudour	
(24hr)	(Liters)	(°C)	рп	<u>spec. Conu</u> (μS/cm)	<u>. DO</u> (mg/L)	(mV)	(N1	TU)	(ml/min)	(feet)	Color/Odor
0940	Sniticl	15,84	6.94	401 :	1.21	245.9	N/	A	~150	30.40	clea-INOR
T943	3.0	15,89	7.03	399	1.11	241.5	11		:	30160	Cleartwore
0946	4.5	15.85	7.09	397	1.09	240.3	┼╌┠			30.63	Clear None
0949	6.0	DIDA	2,10	371	1.08	0-39.1				50,67	Clear/Wone
			14 A.		1						
					1		L V		V		
d. Aco Ha Ha Ha	ceptance c s required s required ve parame If no or N/	riterià p volume turbidit ters sta A - Exp	bass/fail been re y been r abilized blain bel	emoved eached ow.	Yes N D D D C C C C C C C C C C C C C C C C		4 				(continued on back)
3. SAMP		ECTION	N: 1	Method: <u>6 (</u>	аB						
Sample II) Co	ntainer 40ml V	Туре ЮА	No. of Cont	ainers	Prese F	rvatio IC1	า	Analys	is Req. 8260B	Time 0955
				·····		· · · · · · · · · · · · · · · · · · ·				· ··	
Comment	ts					· · · · ·					~
								<u></u>			
Signature	<u> </u>	X.s		X					Date	4/22/18	• • • • • • • • • • • • • • • • • • •
-											

Well ID: 48 DW-3

Client: NCDOT - Pittsboro	Date:	4/27/2010	Tin	ne: Start 🞝	ioam/pm	
Project No: 60154105.3				Finish 🚺	<u>4</u> am/pm	
Site Location: Pittsboro, NC						
Weather Conds: ~65° ¥ SUNM	Collector(s)	:1	. Babineau	/B.Bennett	· · ·	
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	······				
a. Total Well Length > /00 c. Length of Water C	olumn <u>N/A</u>	(a-b)		Casing Diameter/Material 2" PVC		
b. Water Table Depth $\partial \mathcal{L} \partial \partial$ d. Calculated System	n Volume (see	back) <u>V</u>	A	•		
2. WELL PURGE DATA a. Purge Method: Peristaltic/ Monsoon/ Grundfus						
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.1	6)mV 3'	•				
c. Field Testing Equipment used: Make YSI		Model 556		Serial	Number 68	
· · · · · · · · · · · · · · · · · · ·						
Volume		Turbidity	Flow Rate	Drawdown	* Color/Odor	
$\begin{array}{cccc} \underline{\text{11me}} & \text{11me$) (mV)	(NTU)	(ml/min)	(teet)	0101/0401	
1220 Enited 16.20 2.89 261 0.44	164.5	NIA	200	30.45	des/war	
1223 6.0 16.27 7.89 261 0.43	160.9			30.70	clar/work	
126 9.0 16.32 7.89 262 0.42	156.9	<u> </u>		30.81	Clertin	
1229 12.0 16.36 7.89 261 0.40	154.7			30.94	datura	
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.					(continued on back)	
3. SAMPLE COLLECTION: Method: GRAS					······································	
Sample ID Container Type No. of Containers	Preser H	vation Cl	Analysi	s Req. 8260B	Time	
					<u></u>	
					<u> </u>	
Comments icenter level meter Not long &	enough to	gaze	Bottom	ot well		
		· · · · ·				
∂	· · · · · · · · · · · · · · · · · · ·				1	
Signature Decker			Date	4/22/	18	
				·		

Well ID: 48 DW-4

Client:	NCDOT -	Pittsbo	ro	(01	54105.2	Date:	4/2720	10 Ti	me: Start <u>l'</u>	<u>435</u> am/pm	
Sito Loca	0: tion: Dit	taboro	NC	601	54105.3				Finish	am/pm	
Weather	Conds:	~6	5 350	wm	·····	Collector(s)	:	D. Babineau	l/B.Bennett		
			(of Cooli				· · · · · · · · · · · · · · · · · · ·		
I. WAIE		DATA:	(measu ไปโซ	a longth of		iy) iumn (1.4	/a h		Casing Diam	eter/Material	
a. rot	ai weii Ler	ngtn 👱		c. Lengin of	water Co	Numn <u>N/H</u>	(a-L	<i>י</i> ן	- 2"	PVC	
b. Wa	ter Table [Depth 1	1.31	d. Calculated	d System	Volume (see	back) -	NIA		2	
2. WELL a. Pur	. PURGE I ge Methoc	DATA I:, Pei	ristaltic/ I	Monsoon/Grun	dfus						
b. Acc	eptance C	riteria d	defined ((see workplan)							
- Tem	perature	3%	, 5 1.0	-D.O.	10%	~)/					
-p⊓ -Sp.(Cond.	±_ 3%		- One - Drawdown	< 0.3	11 V 1					
			-		-1		Mada	, ·	O a mia l	N la una la com	
C. FIEI	a resting i	Equipm	ent used	u: Mi Y	ake SI		1000e	6	Serial Number いろくお		
									, , , , , , , , , , , , , , , , ,		
Time	Volume			Space Cond			Turbidi	ty Elow Pote	Draudaur	Calar/Odar	
(24hr)	(Liters)	(°C)	<u>p</u>	<u>Spec. Cond.</u> (μS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(teet)	Color/Odor	
1445	Intral	15.63	7.89	292	1.30	-11.8	NA	150	16.32	clea/None	
1448	3.0	15.58	7188	294	1.33	-10.5			16.40	closed 1 ma	
1454	5.0	15.63	7.88	294	1.33	~10.7			16.43	Clar / Wora	
										<i>,.</i>	
				1				+ -	P		
d. Ac	ceptance c	riteria p	bass/fail	L	Yes N	lo N//	↓ ▼ 4		1	(continued on back)	
Ha	s required	volume	e been re	emoved		፲ 4፲					
Ha Ha	s required	turbidit	y been r abilized	reached	L L ភា r						
, na	If no or N	/A - Exp	plain bel	ow.							
3 SAMP		ECTIO	N- I	Method:	los						
0. 07.111			••								
Sample II		ontainer	Туре	No. of Conta	ainers	Prese	rvation	Analys	is Req.	Time	
780W		40ml V	/OA	3		H			8260B	1450	
									·····		
							· ·				
Commen	ts										
<u></u>											
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					· · · · ·	
	2	\square	/						1/107/	 λ	
Signature		6	~	Alers				Date	712/11	U	
	$\delta q \langle z \rangle$										

Well ID:48Mw-1

Low Flo	w Ground	Water	Sample	Collection	Record
---------	----------	-------	--------	------------	--------

Client: NCDOT - Pittsboro Project No: 60154105 3	Date: 4/2-7/2010	Time: Start 1025	am/pm
Site Location: Pittsboro, NC Weather Conds: ~65° VSU c.~2	Collector(s): D. Bat	Dineau/B.Bennett	
1 WATER LEVEL DATA: (measured from Top of Cas	ing)		,
a. Total Well Length <u>46.03</u> c. Length of Water C	olumn <u>]3.23</u> (a-b)	Casing Diameter 2" PVC	/Material
b. Water Table Depth 32.85 d. Calculated System	N Volume (see back)		
2. WELL PURGE DATA a. Purge Method: Peristaltic/ Monsoon/ Grundfus			~ .
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.	5)mV 3'		
c. Field Testing Equipment used: Make YSI	Model 556	Serial Nur 13968	nber
Volume <u>Time Removed Temp. pH</u> <u>Spec. Cond. DO</u> (24h) (Liters) (°C) (wS(cm) (mg/l)	ORP Turbidity Flow	Rate Drawdown C	olor/Odor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 33.90 c/∂ 34.71 c/e 34.76 c/l	wely/wore
1044 5.0 17.46621 270 0.42 1047 6.0 17.536.20 262 0.39	99,0	34,77 Cla 34,78 Cl	and work
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(cont	inued on back)
3. SAMPLE COLLECTION: Method: Graß	<u></u> , voloni volo i pro		
Sample ID Container Type No. of Containers <u>48 m W ~1</u> 40ml VOA 3	Preservation A HCl	nalysis Req. 8260B	Time ბე კე
Comments			
Signature Profession	D	ate <u>4/27/10</u>	

Client: NCDOT - Pittsboro Project No: 601541 Site Location: Pittsboro, NC	Date:	4/2	6/2010	Tin	ne: Start <u>/</u> Finish <u>/</u> 3	∃7 <u>∯</u> am/pm 355_am/pm
Weather Conds: 705, p. clardy	Colle	ector(s):	I). Babineau	B.Bennett	
 WATER LEVEL DATA: (measured from Top of a. Total Well Length <u>49.71</u> c. Length of Wa b. Water Table Depth <u>30.13</u> d. Calculated St WELL PURGE DATA 	f Casing) ater Column ystem Volur	n_ i 9. 58 me (see bac	(a-b) ^{k)} _~	124	Casing Diam 2" I	eter/Material PVC
 b. Acceptance Criteria defined (see workplan) Temperature 3% -D.O. pH <u>+</u>1.0 unit - ORP Sp. Cond. 3% - Drawdown 	10% <u>+</u> 10mV < 0.3'					
c. Field Testing Equipment used: Make)	Ν			Serial	Number
131			330	*****	(037
Volume <u>Time Removed Temp. pH</u> <u>Spec. Cond.</u> (24b) (liters) (S)	$\frac{DO}{dma(l)}$	ORP <u>Tu</u>		Flow Rate	Drawdown	Color/Odor
1320 3L 18.55 5.77 237	VSAT 1	59.7 A	VA I	250	31.77	the brown / none
1325 4L 18.80 5.74 207	3.02 1	38.8	1	200	31.76	1. 1.
1330 GL 18.23 5.80 198	2.26 1	26.4		200	31.78	11/11
1335 6 11.17 5.80 174	2.05 1	19-6	+	200	51.78	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	192 1	12.9	++	700	31.77	11/11
	1.12 1		*	200		~ / ~
d. Acceptance criteria pass/fail Ye Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	s No },			12		(opptinued on back)
3. SAMPLE COLLECTION: Method:	onsoon					
Sample ID Container Type No. of Container <u>48 MW</u> -2 40ml VOA 3	ers	Preservat HCl	ion	Analysi	s Req. 8260B	Time 1350
		· · · ·				
Comments		- <u> </u>				<u> </u>
Signature 37				Date	4/24/10	
Signature				Date	y/24/10	

Client: NCDOT - Pittsboro		Date:	4/ 26 /2010	Tir	ne: Start <u>14</u>	103 am/pm	
Project No:	60154105.3				Finish <u>/</u>	<u>9ぞこ</u> am/pm	
Site Location: <u>Pittsboro, NC</u>							
Weather Conds: 70's p-c	lardy	Collector(s):	I	D. Babineau	/B Bennett		
1. WATER LEVEL DATA: (measured from Top of Casing)							
a. Total Well Length $\underline{-2"PVC}$						PVC	
b. Water Table Depth 35.55 d. Calculated System Volume (see back)							
a. Purge Method: , Peristaltic/ Monsoon/ Grundfus							
b. Acceptance Criteria defined (s	see workplan)	<u>_</u>					
- pH <u>+</u> 1.0 unit - Sp. Cond. 3%	- ORP <u>+</u> 10 - Drawdown < 0.1)mV 3'					
c. Field Testing Equipment used	: Make		Model	į	Serial	Number	
	1.51	. <u></u>	550		V	039	
	<u></u>					·····	
<u>Time</u> <u>Removed</u> <u>Temp.</u> <u>pH</u>	Spec. Cond. DO (uS/cm) (mg/L)) ORP (mV)	Turbidity	Flow Rate	Drawdown (feet)	Color/Odor	
1413 3- 17.50 6.09	242 1.62	8 126.2	NA	250	34.19	aler Inone	
1418 42 17.76 6.12	244 1.17	128.4		200	34.09	11/11	
1133 34 17.66 6.13	249 1.08	130.0		200	34.27	4/11	
1428 66 17.97 6.14	250 1.04	130.8		200	34.32	11/17	
1433 782 17-82 6.13	251 1.10	130.9		200	34.30	" [4	
				. <u></u>	e		
d Acceptance criteria pass/fail	Yes	No N/A	٢		l <u>'</u>	(continued on back)	
Has required volume been re	moved		7			(Serning of Dack)	
Has required turbidity been re	eached		/				
Have parameters stabilized		i n					
If no or N/A - Explain belo	ow.						
	Acthority Mu		<u>_</u>	<u></u>	······,		
3. SAMPLE COLLECTION: N	ielnou: <u>170/15001</u>						
Sample ID Container Type	No. of Containers	Preser He	vation Cl	Analys	is Req. 8260B	Time /43 <i>5</i>	
					· · · · ·		
Comments							
						······	
Signature Tota 4/24/12							
	<i>y</i>		· · · · · · · · · · · · · · · · · · ·				

Well ID: 48 MW - 4R

	<u>_</u>	4	AL - L'0010	 		P
Client: NCDOT - Pittsboro	Da [®]	te:	4/ EG /2010	<u> </u>	ime: Start /	<u>507</u> am/pm
Cite Leastion Division NC	105.3				Finisn /	am/pm
Site Location: Pittsboro, NC						
weather Conds: 705 P. cloudy		pliector(s):		D. Babinea	WB Bennett	
1. WATER LEVEL DATA: (measured from Top o	f Casing))				
a. Total Well Length 35.43 c. Length of Wa	ater Colur	nn 14-2	.V (a-b)		Casing Dian	neter/Material
		·····	(u, v)		2"	PVC
b. Water Table Depth 21.17 d. Calculated S	ystem Vo	lume (see l	back)	8.742		
					_	
a Purge Method: Peristaltic/ Monsoon/ Grundfu	is					
diff dige monod.						
b. Acceptance Criteria defined (see workplan)					ġ.	
- Temperature 3% -D.O.	10%					
- pH ± 1.0 unit - ORP	± 10mV					
- Sp. Cond. 5% - Drawdown	< 0.3					
c. Field Testing Equipment used: Make	e		Model		Seria	Number
YSI			556			6054
Volume			Turkidit	Class Dat	Droudour	
(24hr) (Liters) (°C) (uS/cm)	<u>DO</u> (ma/L)	(mV)	(NTU)	(ml/min)	el Drawdown (feet)	Color/Odor
1515 IL 172 5.80 350	2.53	137.9	NA	100	10021.19	clear / non
1520 ZL 18.08 5.80 350	1.23	142.2		200	Z1.) 9	11 / 11
1525 7.5.3. 18.17 5.81 350	1.37	144.2		100	21.19	11/1
1530 3.52 18.08 5.82 351	1.70	1452		200	21.20	11/11
1535 4.52 18.40 5.82 350	1.89	145.0		100	21.20	11/11
1340 51 18.24 3.83 350	1.80	173.7	$-\sqrt{7}$	100	21.20	
d Acceptance criteria pass/fail	<u>i 896 </u> s No	<u> </u>		400	121.00	(continued on back)
Has required volume been removed		সি	/			
Has required turbidity been reached	i 🗖	Ŕ	-			
Have parameters stabilized			•			
If no or N/A - Explain below.	•					
2 SAMELE COLLECTION: Methods						
3. SAMPLE COLLECTION: Method	CV.Stulti	<u> </u>	- 11/0			
Sample ID Container Type No. of Container	ers	Preser	vation	Analy	sis Rea.	Time
48MW.4R 40ml VOA 3		H	CI	,	8260B	1550
			•			
		•				
Comments						
				,		
Signature 7 24				Date	4/21. 1in	
		<u></u>	 		-11-0110	

	_
Client: NCDOT - Pittsboro	Date: 4/ 27 2010 Time: Start 1105 am/pm
Project No: 601541	105.3 Finish 1200 am/pm
Site Location: <u>Pittsboro, NC</u>	
Weather Conds: 605p. cloudy	Collector(s): D. Babinear B.Bennett
1 WATER EVEL DATA: (measured from Top of	Casing)
a Total Wall Longth 24 7k a Longth of Wa	Casing Diameter/Material
a. Total well Length <u>54.17</u> c. Length of Wa	uer Column <u>11-14</u> (a-b) 2" PVC
b. Water Table Depth 23.62 d. Calculated Sy	vstem Volume (see back) la . 83
2. WELL PURGE DATA a Purge Method Peristaltic Monsoon/ Grundfur	s
a. I uige weinor, I ensiand wonsoon orundra	5
b. Acceptance Criteria defined (see workplan)	
- Temperature 3% -D.O.	10%
- pH ± 1.0 unit - ORP	<u>+</u> 10mV
- Sp. Cond. 3% - Drawdown	< 0.3
c. Field Testing Equipment used: Make	Model Serial Number
YSI	556 6054
Volume	
<u>Ime Removed Temp. pH Spec. Cond.</u>	(mg/l) (mV) (NTU) (mi/min) (feet)
115 1 $2l-39$ 6.57 94	8-91 21.6 NA 100 23.03 elenctrone
1120 2.52 2023 6-68 182	0.96 -0.6 1 100 23.06 11 / 11
1125 21 20.30 6.52 186 (2-58 -10.2 100 23.05 11 / 11
1135 2-56 20.95 6.29 223	1-75 -40.8 100 23.10 11 / 11
1140 31 20.33 6.12 279	2-4/ -46.4 100 23.11 ,1 / 11
1145 3.5 20.09 6.08 301	1.18 51.7 100 23.13 11 /
1150 9 109.19 6.01 309	<u>1.10</u> -33.4 V 100 23.15 1. 1.1
Has required volume been removed	
Has required turbidity been reached	
Have parameters stabilized	
If no or N/A - Explain below.	
•	
	<i>A v</i>
3. SAMPLE COLLECTION: Method:	Peristaltic
Sample ID Container Type No. of Container	are Proconvision Analysis Roa Timo
4 g M h = 5 $40 m I V O A$ 3	HC1 $k^{2}60B$ lls^{5}
Comments 112.7 - hattery died for peri	staltic 1132 - opristaltic restarted
2 /00	4/7-2/10
Signature K	Date/C7//C

48MW-5

VOLUME TEMP ett SPEC 4.56 19.92 6.06 310 1.18 - 54.6 Тіме 1155 23.14 cleer Inere FLOW NATE 100

Client: NCDOT - Pittsboro	Date:	4/ 27/ 2010	Time: Start	ວ / ≲am/pm
Project No: 60154105.3			Finish	1100 am/pm
Site Location: <u>Pittsboro, NC</u>				
Weather Conds: 603, p. cloudy	Collector(s)	: D. Bai	binear(B.Bennett)	
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	70	Casing Dian	otor/Matarial
a. Total Well Length <u>37.00</u> c. Length of Water C	olumn <u> 14</u> . ·	<u>#0</u> (a-b)		PVC
b. Water Table Depth <u>24.96</u> d. Calculated System	ו Volume (see	back) 9L		
a. Purge Method: Peristaltic/ Monsoon/ Grundfus				
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- ORP+10- Sp. Cond.3%- Drawdown< 0.3)mV 3'			~
c. Field Testing Equipment used: Make YSI		Model 556	Seria	Number 6084
			<u>ه</u>	
Volume Time Removed Temp. pH Spec. Cond. DO	ORP	Turbidity Flow	Rate Drawdown	Color/Odor
(24hr) (Liters) (°C) (μS/cm) (mg/L)) (mV)	(NTU) (ml)	/min) (teet)	
1025 IL 17.64 5.86 1-5 2.90	<i>L</i> 10.3	NA 10	0 25.43	cler min
1030 1.52 1803 5.71 131 2.5	55 7183		0 20.73	
1035 L 10.10 3.11 139	3 2307		$\frac{(2)}{2} \frac{25 \cdot 9}{75 \cdot 49}$	
1045 3 1749 5 71 130 1.7	× 2342		0 25.49	11/11
1050 3.5- 1798 5.63 130 1.75	5 7.30.9	10	0 25.48	4///
		V I		
d. Acceptance criteria pass/fail Yes	No N/A	N Contraction of the second se		_(continued on back)_
Has required volume been removed		2		
Has required turbidity been reached		S ²		
Have parameters stabilized		-		
If no or N/A - Explain below.				
3 SAMPLE COLLECTION: Method: Person			ta dé	
			· · · ·	
Sample ID Container Type No. of Containers	Presei	rvation A	nalysis Req. 8260B	Time Inst
				1005
		in the second	1997 - 19	
Comments				
			·····	<u></u>
ITA	<u>.</u>)
Signature		C	Date <u>4/2</u>	7/10:

Well ID: 48MW-10

Client: NCDOT - Pittsboro	Date: 4/2 7/2010	Time: Start	Time: Start <u>0735</u> am/pm		
Project No. 00134105.3 Site Location: Pittsboro, NC Weather Conds: 60's partly cloudy	Collector(s):	Babineau/B.Bennett			
 WATER LEVEL DATA: (measured from Top of Casi a. Total Well Length <u>29.50</u> c. Length of Water Co b. Water Table Depth <u>28.07</u> d. Calculated System 	n g) olumn <u>1.43</u> (a-b) Volume (see back) <u>O</u> r	Casing Diameter	/Material		
2. WELL PURGE DATA a. Purge Method: Peristality/ Monsoon/ Grundfus		· · · · · · · · · · · · · · · · · · ·			
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.3	mV 3'				
c. Field Testing Equipment used: Make YSI	Model 556	Serial Nur	nber 54		
Volume Time Removed Temp. pH Spec. Cond. DO (24hr) (Liters) (°C) (µS/cm) (mg/L) 0745 11_ 15.27 ½ 78 S-20/229 5.7 0750 1.5 15.20 4.73 178 5.7 0755 2_ 15.27 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0755 2_ 15.77 6.31 172 5.9 0 0 0 0 0 0 0 d. Acceptance criteria pass/fail Yes 1 1 1 Has required volume been removed 0 1 1 1 Have parameters stabilized 1 1	$\begin{array}{c c} \underline{ORP} & \underline{Turbidity} & \underline{FI} \\ (mV) & (NTU) & (1) \\ \hline $	<u>ow Rate</u> Drawdown C ml/min) (feet) /(ひ 28.60 C/ t 00 28.70 (* 00 28.70 (* 00 28.70 (*	Color/Odor		
3. SAMPLE COLLECTION: Method: Sample ID Container Type No. of Containers $\mathscr{YSMN} - \mathscr{II} = 40 \text{ml VOA}$ 3	Preservation HCl	Analysis Req. 8260B	Time 1905		
Comments WELL HANNE TRUBE PUTTING INC	, SEEMS TO BE LOW	C DRY GIMPLENT	of STABIL 12		
Signature 75 Brad		Date 4/27/13			

ΔΞ	ECO	M							Well ID:	48Mw-1
	L	ow F	low (Ground	Water	Samp	e Coll	ection	Record	1520
Client: Project N	NCDOT -	- Pittsbor	:0	60	D154105.3)ate:	4/ F7 /2010	Tin	ne: Start B Finish <i>je</i>	506 am/pr
Site Loca Veather	ation: <u>Pi</u> Conds:	ttsboro, \mathbb{I}	NC S VS			Collector(s);	D. Babineau/	B.Bennett	*
. WATE a. Tot b. Wa	ER LEVEL tal Well Le ater Table I	DATA: ngth_3,	(measu 2.34 7.25	red from To c. Length o d. Calculate	op of Casin f Water Col ed System \	g) umn <u>24</u> ्र /olume (see	29_(a-b) ∋ back) _/	5,20	Casing Diam	eter/Material PVC
a. Pu	L PURGE I	DATA d: , Per	ristaltic/ N	Monsoon Gru	ndfus					
b. Acc - Tem - pH - Sp. c. Fie	ceptance (nperature Cond.	Criteria c 3% <u>+</u> 1 3% Equipm	defined (.0 unit ent usec	see workplar -D.O. - ORP - Drawdow	n) 10% <u>+</u> 10m n < 0.3' <i>M</i> ake	١V	Model		Serial	Number
					YSI		556	<u> </u>	139	ୖଌ
Time (24hr) 535 547 547 547 547 547 547 6. Ac Ha Ha Ha	Removed (Liters) Imi, in Imi,	<u>Temp.</u> (°C) <i>JSU</i> <i>JSU</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i> <i>ISQ</i>	$\frac{pH}{7, 23}$ $7, 20$ $7, 22$	Spec. Conc (µS/cm) 3 € 3 3 81 3 82 3 84 3 85 emoved eached ow.	1. DO (mg/L) 3.70 3.70 3.60 3.70 3.70 3.70 3.70 3.70 2. □	ORP (mV) 150. ₹ 157. 6 157. 1 154. 9 155. 7 0 N/. 0 N/.	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet) (λ.λ.] iλ.δ.7 iλ.40 iλ.45 iλ.50	Color/Odor Clear/ware Clear/ware Clear/ware Clear/ware (continued on bac
Sample I	ID Co -13	ontainer 40ml V	⁷ OA	No. of Con	tainers	Prese I	ervation ICl	Analysi	s Req. 8260B	Time ISSO
Commen	nts				· · · · · · · · · · · · · · · · · · ·		(W ^E):	· · · · · · · · · · · · · · · · · · ·		
	······				/		· · · · · · · · · · · · · · · · · · ·	<u> </u>	······	
										/

	• • • • • • • • • • • • • • • • • • •						
Client: NCDOT - Pittsboro	Date: 4/27/2010	Time: Start					
Project No: 60154105.3		Finish 161 0 am/pm					
Site Location: Pittsboro, NC							
Weather Conds: 705, p. Cloudy	Collector(s): D. Babin	eau/B.Bennett					
1 WATER EVEL DATA: (measured from Top of Cas	ina)						
Total Well Length 22 El a Longth of Water C	a_{a}	Casing Diameter/Material					
a. Total weil Length <u>c. 51</u> c. Length of Water C		2" PVC					
b. Water Table Depth 19.58 d. Calculated System Volume (see back) 4.86							
a. Purge Method: Peristakic/ Monsoon/ Grundfus							
b. Acceptance Criteria defined (see workplan)							
- Temperature 3% -D.O. 10%	>						
$-pH$ ± 1.0 unit $-ORP$ ± 10)mV						
- Sp. Cond. 3% - Drawdown < 0.	3'						
c. Field Testing Equipment used: Make	Model	Serial Number					
YSI	556	6054					
		, 					
Volume							
(24hr) (Liters) (°C) (µS/cm) (mg/L)) (mV) (NTU) (ml/mi	n) (feet)					
1545 1L 14.00 4.71 232 5.15	75.9 NA 100	21.25 clost pare					
1550 1.50 16.00 6.72 233 4.8	7 78.4 100	21.14 11/0					
1555 21 16.12 6.72 233 4.83	5 80.5 100	28.30 4 14					
1000 Z-SL 16.70 6.70 CSS 7.80	9 827 100	24.72 " / 11					
d. Acceptance criteria pass/fail Yes	No N/A	(consider on bask)					
Has required volume been removed							
Has required turbidity been reached							
If no or N/A - Explain below.							
3. SAMPLE COLLECTION: Method: Peris	ita 1t. z						
Sample ID Container Type No. of Containers	Preservation Ana	lysis Req. Time					
4 81718-79 40ml VOA 3	HCl	8260B /605					
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
Commente							
Comments							
······································							
		(
O CAT		ul-li					
Signature /S //	Date	9 7/271/0					

Low Flow	Ground	Water	Sample	Collection	Record
----------	--------	-------	--------	------------	--------

Client: NCDOT - Pittsboro	Date: 4/27/2010	Time: Start am/pm
Cite Leastion: 60154105.3		Finisham/pm
Weather Conds:	Collector(s): D Ba	hineau/B Bannett
Weather conds. \underline{CO} , \underline{pu} tas \underline{r}		billeaw D. Belliket
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	a i b i i i i i i i i i i
a. Total Well Length <u>14.22</u> c. Length of Water C	olumn <u> </u>	Casing Diameter/Material
		2" PVC 4
b. Water Table Depth 8.14 d. Calculated System	N Volume (see back) 3-3	ti
2. WELL PURGE DATA		
a. Purge Method: Peristaltic Monsoon/ Grundfus	· · · · · · · · · · · · · · · · · · ·	
b. Acceptance Criteria defined (see workplan)		
- Temperature 3% -D.O. 10%	, D	
- pH <u>+</u> 1.0 unit - ORP <u>+</u> 10)mV	
- Sp. Cond. 3% - Drawdown < 0.	3'	
c Field Testing Equipment used: Make	Model	Serial Number
YSI	556	6084
······································		
Volume	·	
<u>Time Removed Temp. pH</u> Spec. Cond. DO	ORP (mV) (NTU) (mU)	<u>r Rate Drawdown Color/Odor</u>
[195 6] [1 3,10] (.06] 7.31 0.87	$\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$	9.21 clear Inne
1455 1.5 13.93605 227 1.17	80.7 1 10	D 9.30 11 / 11
1500 ZL 13.90 6.04 ZZ1 Z.77	83.9 la	s 9-36 10 / 11
1505 Z.SL 1313 6.05 Z30 0 82	87.7 10	0 9.42 11/1
1510 3, 13.98 6.02 230 0.89	89.7 100	9.45 11 /11
1213 3.5- 4.08 0.00 031 0.7		
d. Acceptance criteria pass/fail Yes	No NA	Teohilmued-outwock)
Has required volume been removed		
Has required turbidity been reached		
Have parameters stabilized		
If no or N/A - Explain below.		
3. SAMPLE COLLECTION: Method: Perisa	, lac	
· · · · · · · · · · · · · · · · · · ·	·····	
Sample ID Container Type No. of Containers	Preservation A	nalysis Req. Time
<u> 40ml VOA</u> 3	HCl	8260B 1515
		· · · · · · · · · · · · · · · · · · ·
• · · · · · · · · · · · · · · · · · · ·	4	
Commonto		
Comments		
	n	
Angenera da anticipa de la compositiva		······································
2 P.A		4/ 1
Signature	C	Date 7/27/10
		·

01							7/ 9/10	Tim	e: Start 1	60 am/pm
Client:	NCDOT - P	Pittsboro	60154	105 (Da	le	// - //10		Finish 12	50 am/pm
Froject No		1	60154	105.6						
Weather C	ion: <u>Pitts</u>	sboro, N	C.	·····	Co	ollector(s):	3	D. Babir	ieau	
		7 <u>5 v</u>	sunny_					· · · · · ·		
1. WATE		DATA: ((measur	red from Top	of Casing)			asing Diam	eter/Material
a. Tota	Well Leng	gth	45'	c. Length of V	Vater Colui	mn_ <u>7.3</u>	(a-b)	· · ·		DVC
			7 76		o to 10 1/1		4	51 -	Z 1.	rvc
b. Wat	er Table D	epth 3	1.10	d. Calculated	System vo	Diume (see c	Dack)			
2. WELL	PURGE D	ATA								
a. Purç	ge Method		Mons	SON				·······		
h Acc	entanco Ci	ritoria d	efined (s	see workplan)						
- Tem	oprature	3%	ciinca (c	-D.O.	10%					
- pH		<u>+</u> 1	.0 unit	- ORP	<u>+</u> 10m\	V				
- Sp. C	Cond.	3%		- Drawdown	< 0.3'					
c Fiel	d Tactine 5	auinm	entused	ŀ Ma	ake		Model		Şerial	Number
0.110	u resung c	_quipin		YS	SI		556		#20	513
			-							
	Volume						Turbidity	Elow Rate	Drawdown	Color/Odor
<u>Time</u>	Removed	Temp.	<u>pH</u>	Spec. Cond.	(ma/L)	(mV)	(NTU)	(ml/min)	(feet)	
(2411)	(Litters)	19.11	6.13	195	0,40	304.2	NIA	150	38,05	dout /Non
1213	6L	19.01	6,08	193	0,35	305.7		<u> </u>	38.02	Tan/ Non
1216	82	1847	6.06	194	0.34	305.5			38.05	Cloudy Work
1219	101	18.39	6.01	193	0.34	304.4			30.06	(10164) Los
1222	122	19.01	5.99	193	0.34	303.0		+	38.05	Cleedware
1225	142_	19.05	5.98	192	0.33	305, 1			3010-	
d. Ac	Ceptance (criteria	1 pass/fail		Yes No	o N//	4			(continued on back)
Ha	as required	l volume	e been r	emoved] ស្ម័				
Ha	as required	l turbidi	ty been i	reached						
Ha	ave param	eters st	abilized		UK L					
	If no or N	I/A - Ex	plain be	IOW.						
	<u> </u>									
3. SAMI		ECTIO	N:	Method:	wB_					
_				-0.		Drees	rution	Analys	is Rea	Time
Sample I	D C	ontaine	er Type	No. of Cont	ainers	Prese	rvation	Analys	8260B	1235
<u>48MW-</u>	16		<u>A</u>	3		<u>1</u> .				
•										
<u> </u>		<u> </u>								
	ate									· · · · · · · · · · · · · · · · · · ·
nine:										
erenter and an and a second se										
				/	1					
		G	u	~ //				Date	7/alu	9
្រុំប	'е	-JE	sec -	how						
		-								

Client: NCDOT - Pittsboro	Date: 7/ 9/10	Time: Start 100 am/pm
Project No: 60154105.6	-	Finish <u>1145</u> am/pm
Site Location: <u>Pittsboro, NC</u>		
Weather Conds: ~ ~ 95° & Sunny	Collector(s): D.	Babineau
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	
a. Total Well Length 35' c. Length of Water C	column 18.31 (a-b)	Casing Diameter/Material
		2"/PVC
b. Water Table Depth <u>16, 6, 9</u> d. Calculated System	n Volume (see back)	
2. WELL PURGE DATA a. Purge Method:		·
b. Acceptance Criteria defined (see workplan)		
- Temperature 3% -D.O. 10%	6	•
$-pH$ ± 1.0 unit $-ORP$ ± 10)mV	
$- Sp. Cond. \qquad S\% \qquad - Drawdown < 0.$	3	
c. Field Testing Equipment used: Make	Model	Serial Number
YSI	556	2013
Volume	·····	
Time Removed Temp. pH Spec. Cond. DO	ORP Turbidity Flow F	Rate Drawdown Color/Odor
(24hr) (Liters) (°C) (μS/cm) (mg/L) (mV) (NTU) (ml/m	in) (feet)
1110 2, 1, 1, 16.35 3.00 233 2.47	> 499.3 N/A 150	18:50 cloudy/None
116 61 1610 392 202 807		19 35 CH
119 32 16.91 4.03 201 2.07	442,9	19.62 rin 1000
1122 10L 15.86 4.07 2.00 2.09	442.5	19.95 da Ime
d Accentance criteria pace/fail		
Has required volume been removed		(continued on back)
Has required turbidity been reached		
Have parameters stabilized		
If no or N/A - Explain below.		
3. SAMPLE COLLECTION: Method: Grad		· · · · ·
Sample ID Container Type No. of Containers	Preservation An	alysis Req. Time
48MW-17 VOA 3	HCL	8260B // 3 0
Comments		·
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	_	7/01
Signature	Da	te 1/1/10

Appendix E

Laboratory Analytical Reports and Chain of Custody

Michael Dail AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-69

Client Project: NCDOT

Dear Michael Dail,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

FMai Project Manager Barbara Hager

List of Reporting Abbreviations And Data Qualifiers

- B = Compound also detected in batch blank
- BQL = Below Quantification Limit (RL or MDL)

DF = Dilution Factor

Dup = Duplicate

- D = Detected, but RPD is > 40% between results in dual column method.
- E = Estimated concentration, exceeds calibration range.
- J = Estimated concentration, below calibration range and above MDL
- LCS(D) = Laboratory Control Spike (Duplicate)
- MDL = Method Detection Limit
- MS(D) = Matrix Spike (Duplicate)
- PQL = Practical Quantitation Limit
- RL/CL = Reporting Limit / Control Limit
- RPD = Relative Percent Difference
- mg/kg = milligram per kilogram, ppm, parts per million
- ug/kg = micrograms per kilogram, ppb, parts per billion
- mg/L = milligram per liter, ppm, parts per million
- ug/L = micrograms per liter, ppb, parts per billion
- % Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

MI34.021808.4

Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-1 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-1A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.32 g %Solids: 74.7

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0628	1	4/28/2010
Benzene	BQL	0.00628	1	4/28/2010
Bromobenzene	BQL	0.00628	1	4/28/2010
Bromochloromethane	BQL	0.00628	1	4/28/2010
Bromodichloromethane	BQL	0.00628	1	4/28/2010
Bromoform	BQL	0.00628	1	4/28/2010
Bromomethane	BQL	0.00628	1	4/28/2010
2-Butanone	BQL	0.0314	1	4/28/2010
n-Butylbenzene	BQL	0.00628	1	4/28/2010
sec-Butylbenzene	BQL	0.00628	1	4/28/2010
tert-Butylbenzene	BQL	0.00628	1	4/28/2010
Carbon disulfide	BQL	0.00628	1	4/28/2010
Carbon tetrachloride	BQL	0.00628	1	4/28/2010
Chlorobenzene	BQL	0.00628	1	4/28/2010
Chloroethane	BQL	0.00628	1	4/28/2010
Chloroform	BQL	0.00628	1	4/28/2010
Chloromethane	BQL	0.00628	1	4/28/2010
2-Chlorotoluene	BQL	0.00628	1	4/28/2010
4-Chlorotoluene	BQL	0.00628	1	4/28/2010
Dibromochloromethane	BQL	0.00628	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0314	1	4/28/2010
Dibromomethane	BQL	0.00628	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00628	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00628	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00628	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00628	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0314	1	4/28/2010
1,1-Dichloroethane	BQL	0.00628	1	4/28/2010
1,1-Dichloroethene	BQL	0.00628	1	4/28/2010
1,2-Dichloroethane	BQL	0.00628	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00628	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00628	1	4/28/2010
1,2-Dichloropropane	BQL	0.00628	1	4/28/2010
1,3-Dichloropropane	BQL	0.00628	1	4/28/2010
2,2-Dichloropropane	BQL	0.00628	1	4/28/2010
1,1-Dichloropropene	BQL	0.00628	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00628	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00628	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00628	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00628	1	4/28/2010
Ethylbenzene	BQL	0.00628	1	4/28/2010
Hexachlorobutadiene	BQL	0.00628	1	4/28/2010
2-Hexanone	BQL	0.0157	1	4/28/2010
Iodomethane	BQL	0.00628	1	4/28/2010

Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-1 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-1A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.32 g %Solids: 74.7

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00628		1	4/28/2010
4-Isopropyltoluene	BQL	0.00628		1	4/28/2010
Methylene chloride	BQL	0.0251		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0157		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00628		1	4/28/2010
Naphthalene	BQL	0.00628		1	4/28/2010
n-Propyl benzene	BQL	0.00628		1	4/28/2010
Styrene	BQL	0.00628		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00628		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00628		1	4/28/2010
Tetrachloroethene	BQL	0.00628		1	4/28/2010
Toluene	BQL	0.00628		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00628		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00628		1	4/28/2010
Trichloroethene	BQL	0.00628		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00628		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00628		1	4/28/2010
Trichlorofluoromethane	BQL	0.00628		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00628		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00628		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00628		1	4/28/2010
Vinyl chloride	BQL	0.00628		1	4/28/2010
m-,p-Xylene	BQL	0.0126		1	4/28/2010
o-Xylene	BQL	0.00628		1	4/28/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0626	125
Toluene-d8	0.05	0.0467	93
4-Bromofluorobenzene	0.05	0.0432	86

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: <u>DVD</u>

Reviewed By: <u>MB</u>

Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-2 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-2A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.55 g %Solids: 72.7

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0618	1	4/28/2010
Benzene	BQL	0.00618	1	4/28/2010
Bromobenzene	BQL	0.00618	1	4/28/2010
Bromochloromethane	BQL	0.00618	1	4/28/2010
Bromodichloromethane	BQL	0.00618	1	4/28/2010
Bromoform	BQL	0.00618	1	4/28/2010
Bromomethane	BQL	0.00618	1	4/28/2010
2-Butanone	BQL	0.0309	1	4/28/2010
n-Butylbenzene	BQL	0.00618	1	4/28/2010
sec-Butylbenzene	BQL	0.00618	1	4/28/2010
tert-Butylbenzene	BQL	0.00618	1	4/28/2010
Carbon disulfide	BQL	0.00618	1	4/28/2010
Carbon tetrachloride	BQL	0.00618	1	4/28/2010
Chlorobenzene	BQL	0.00618	1	4/28/2010
Chloroethane	BQL	0.00618	1	4/28/2010
Chloroform	BQL	0.00618	1	4/28/2010
Chloromethane	BQL	0.00618	1	4/28/2010
2-Chlorotoluene	BQL	0.00618	1	4/28/2010
4-Chlorotoluene	BQL	0.00618	1	4/28/2010
Dibromochloromethane	BQL	0.00618	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0309	1	4/28/2010
Dibromomethane	BQL	0.00618	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00618	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00618	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00618	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00618	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0309	1	4/28/2010
1,1-Dichloroethane	BQL	0.00618	1	4/28/2010
1,1-Dichloroethene	BQL	0.00618	1	4/28/2010
1,2-Dichloroethane	BQL	0.00618	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00618	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00618	1	4/28/2010
1,2-Dichloropropane	BQL	0.00618	1	4/28/2010
1,3-Dichloropropane	BQL	0.00618	1	4/28/2010
2,2-Dichloropropane	BQL	0.00618	1	4/28/2010
1,1-Dichloropropene	BQL	0.00618	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00618	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00618	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00618	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00618	1	4/28/2010
Ethylbenzene	BQL	0.00618	1	4/28/2010
Hexachlorobutadiene	BQL	0.00618	. 1	4/28/2010
2-Hexanone	BQL	0.0155	1	4/28/2010
lodomethane	BQL	0.00618	1	4/28/2010
Client Sample ID: SB-2 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-2A Lab Project ID: G1037-69 Report Basis: Dry Weight

ł

Analyzed By: CLP Date Collected: 04-19-2010 09:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.55 g %Solids: 72.7

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00618		1	4/28/2010
4-Isopropyltoluene	BQL	0.00618		1	4/28/2010
Methylene chloride	BQL	0.0247		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0155		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00618		1	4/28/2010
Naphthalene	BQL	0.00618		1	4/28/2010
n-Propyl benzene	BQL	0.00618		1	4/28/2010
Styrene	BQL	0.00618		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00618		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00618		1	4/28/2010
Tetrachloroethene	BQL	0.00618		1	4/28/2010
Toluene	BQL	0.00618		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00618		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00618		1	4/28/2010
Trichloroethene	BQL	0.00618		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00618		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00618		1	4/28/2010
Trichlorofluoromethane	BQL	0.00618		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00618		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00618		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00618		1	4/28/2010
Vinyl chloride	BQL	0.00618		1	4/28/2010
m-,p-Xylene	BQL	0.0124		1	4/28/2010
o-Xylene	BQL	0.00618		1	4/28/2010
		Spike	Spike	Percent	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0625	125	
Toluene-d8	0.05	0.0462	92	
4-Bromofluorobenzene	0.05	0.0434	87	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: 0V0

Reviewed By: ______

Client Sample ID: SB-3 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-3A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.26 g %Solids: 73.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0647	1	4/28/2010
Benzene	BQL	0.00647	1	4/28/2010
Bromobenzene	BQL	0.00647	1	4/28/2010
Bromochloromethane	BQL	0.00647	1	4/28/2010
Bromodichloromethane	BQL	0.00647	1	4/28/2010
Bromoform	BQL	0.00647	1	4/28/2010
Bromomethane	BQL	0.00647	1	4/28/2010
2-Butanone	BQL	0.0324	1	4/28/2010
n-Butylbenzene	BQL	0.00647	· 1	4/28/2010
sec-Butylbenzene	BQL	0.00647	1	4/28/2010
tert-Butylbenzene	BQL	0.00647	1	4/28/2010
Carbon disulfide	BQL	0.00647	1	4/28/2010
Carbon tetrachloride	BQL	0.00647	1	4/28/2010
Chlorobenzene	BQL	0.00647	1	4/28/2010
Chloroethane	BQL	0.00647	1	4/28/2010
Chloroform	BQL	0.00647	1	4/28/2010
Chloromethane	BQL	0.00647	1	4/28/2010
2-Chlorotoluene	BQL	0.00647	1	4/28/2010
4-Chlorotoluene	BQL	0.00647	1	4/28/2010
Dibromochloromethane	BQL	0.00647	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0324	1	4/28/2010
Dibromomethane	BQL	0.00647	1	4/28/2010
1.2-Dibromoethane (EDB)	BQL	0.00647	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00647	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00647	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00647	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0324	1	4/28/2010
1,1-Dichloroethane	BQL	0.00647	1	4/28/2010
1,1-Dichloroethene	BQL	0.00647	1	4/28/2010
1,2-Dichloroethane	BQL	0.00647	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00647	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00647	1	4/28/2010
1,2-Dichloropropane	BQL	0.00647	1	4/28/2010
1.3-Dichloropropane	BQL	0.00647	1	4/28/2010
2,2-Dichloropropane	BQL	0.00647	1	4/28/2010
1,1-Dichloropropene	BQL	0.00647	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00647	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00647	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00647	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00647	1	4/28/2010
Ethylbenzene	BQL	0.00647	1	4/28/2010
Hexachlorobutadiene	BQL	0.00647	1	4/28/2010
2-Hexanone	BQL	0.0162	1	4/28/2010
lodomethane	BQL	0.00647	1	4/28/2010

Client Sample ID: SB-3 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-3A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.26 g %Solids: 73.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00647		1	4/28/2010
4-Isopropyltoluene	BQL	0.00647		1	4/28/2010
Methylene chloride	BQL	0.0259		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0162		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00647		1	4/28/2010
Naphthalene	BQL	0.00647		1	4/28/2010
n-Propyl benzene	BQL	0.00647		1	4/28/2010
Styrene	BQL	0.00647		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00647		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00647		1	4/28/2010
Tetrachloroethene	BQL	0.00647		1	4/28/2010
Toluene	BQL	0.00647		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00647		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00647		· 1	4/28/2010
Trichloroethene	BQL	0.00647		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00647		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00647		1	4/28/2010
Trichlorofluoromethane	BQL	0.00647		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00647		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00647		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00647		1	4/28/2010
Vinyl chloride	BQL	0.00647		1	4/28/2010
m-,p-Xylene	BQL	0.0129		1	4/28/2010
o-Xylene	BQL	0.00647		1	4/28/2010
		Spike	Spike	Percent	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0615	123
Toluene-d8	0.05	0.0467	93
4-Bromofluorobenzene	0.05	0.0441	88

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____0∨0

Reviewed By: M

Client Sample ID: SB-4 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-4A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.19 g %Solids: 72.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0823	1	4/28/2010
Benzene	BQL	0.00823	1	4/28/2010
Bromobenzene	BQL	0.00823	1	4/28/2010
Bromochloromethane	BQL	0.00823	1	4/28/2010
Bromodichloromethane	BQL	0.00823	1	4/28/2010
Bromoform	BQL	0.00823	1	4/28/2010
Bromomethane	BQL	0.00823	1	4/28/2010
2-Butanone	BQL	0.0411	1	4/28/2010
n-Butylbenzene	BQL	0.00823	1	4/28/2010
sec-Butylbenzene	BQL	0.00823	1	4/28/2010
tert-Butylbenzene	BQL	0.00823	1	4/28/2010
Carbon disulfide	BQL	0.00823	1	4/28/2010
Carbon tetrachloride	BQL	0.00823	1	4/28/2010
Chlorobenzene	BQL	0.00823	1	4/28/2010
Chloroethane	BQL	0.00823	1	4/28/2010
Chloroform	BQL	0.00823	1	4/28/2010
Chloromethane	BQL	0.00823	1	4/28/2010
2-Chlorotoluene	BQL	0.00823	1	4/28/2010
4-Chlorotoluene	BQL	0.00823	1	4/28/2010
Dibromochloromethane	BQL	0.00823	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0411	1	4/28/2010
Dibromomethane	BQL	0.00823	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00823	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00823	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00823	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00823	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0411	1	4/28/2010
1,1-Dichloroethane	BQL	0.00823	1	4/28/2010
1,1-Dichloroethene	BQL	0.00823	1	4/28/2010
1,2-Dichloroethane	BQL	0.00823	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00823	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00823	1	4/28/2010
1,2-Dichloropropane	BQL	0.00823	1	4/28/2010
1,3-Dichloropropane	BQL	0.00823	1	4/28/2010
2,2-Dichloropropane	BQL	0.00823	1	4/28/2010
1,1-Dichloropropene	BQL	0.00823	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00823	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00823	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00823	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00823	1	4/28/2010
Ethylbenzene	BQL	0.00823	1	4/28/2010
Hexachlorobutadiene	BQL	0.00823	1	4/28/2010
2-Hexanone	BQL	0.0206	1	4/28/2010
lodomethane	BQL	0.00823	1	4/28/2010

Client Sample ID: SB-4 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-4A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.19 g %Solids: 72.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00823		1	4/28/2010
4-Isopropyltoluene	BQL	0.00823		1	4/28/2010
Methylene chloride	BQL	0.0329		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0206		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00823		1	4/28/2010
Naphthalene	BQL	0.00823		1	4/28/2010
n-Propyl benzene	BQL	0.00823		1	4/28/2010
Styrene	BQL	0.00823		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00823		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00823		1	4/28/2010
Tetrachloroethene	BQL	0.00823		1	4/28/2010
Toluene	BQL	0.00823		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00823		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00823		1	4/28/2010
Trichloroethene	0.120	0.00823		1	4/28/2010
1,1,1-Trichloroethane	0.0162	0.00823		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00823		1	4/28/2010
Trichlorofluoromethane	BQL	0.00823		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00823		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00823		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00823		1	4/28/2010
Vinyl chloride	BQL	0.00823		1	4/28/2010
m-,p-Xylene	BQL	0.0165		1	4/28/2010
o-Xylene	BQL	0.00823		1	4/28/2010
		Spike	Spike	Percent	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0611	122	
Toluene-d8	0.05	0.0464	93	
4-Bromofluorobenzene	0.05	0.0441	88	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____/O

Reviewed By: <u>H9</u>

Client Sample ID: SB-4 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-5D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.31 g %Solids: 72.9

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.61	50	4/30/2010
Benzene	BQL	0.0646	50	4/30/2010
Bromobenzene	BQL	0.0646	50	4/30/2010
Bromochloromethane	BQL	0.0646	50	4/30/2010
Bromodichloromethane	BQL	0.0646	50	4/30/2010
Bromoform	BQL	0.0646	50	4/30/2010
Bromomethane	BQL	0.0646	50	4/30/2010
2-Butanone	BQL	1.61	50	4/30/2010
n-Butylbenzene	BQL	0.0646	50	4/30/2010
sec-Butylbenzene	BQL	0.0646	50	4/30/2010
tert-Butylbenzene	BQL	0.0646	50	4/30/2010
Carbon disulfide	BQL	0.0646	50	4/30/2010
Carbon tetrachloride	BQL	0.0646	50	4/30/2010
Chlorobenzene	BQL	0.0646	50	4/30/2010
Chloroethane	BQL	0.0646	50	4/30/2010
Chloroform	BQL	0.0646	50	4/30/2010
Chloromethane	BQL	0.0646	50	4/30/2010
2-Chlorotoluene	BQL	0.0646	50	4/30/2010
4-Chlorotoluene	BQL	0.0646	50	4/30/2010
Dibromochloromethane	BQL	0.0646	50	4/30/2010
1.2-Dibromo-3-chloropropane	BQL	0.323	50	4/30/2010
Dibromomethane	BQL	0.0646	50	4/30/2010
1.2-Dibromoethane (EDB)	BQL	0.0646	50	4/30/2010
1.2-Dichlorobenzene	BQL	0.0646	50	4/30/2010
1.3-Dichlorobenzene	BQL	0.0646	50	4/30/2010
1.4-Dichlorobenzene	BQL	0.0646	50	4/30/2010
trans-1.4-Dichloro-2-butene	BQL	0.323	50	4/30/2010
1.1-Dichloroethane	BQL	0.0646	50	4/30/2010
1.1-Dichloroethene	BQL	0.0646	50	4/30/2010
1.2-Dichloroethane	BQL	0.0646	50	4/30/2010
cis-1.2-Dichloroethene	BQL	0.0646	50	4/30/2010
trans-1.2-dichloroethene	BQL	0.0646	50	4/30/2010
1.2-Dichloropropane	BQL	0.0646	50	4/30/2010
1.3-Dichloropropane	BQL	0.0646	50	4/30/2010
2.2-Dichloropropane	BQL	0.0646	50	4/30/2010
1.1-Dichloropropene	BQL	0.0646	50	4/30/2010
cis-1.3-Dichloropropene	BQL	0.0646	50	4/30/2010
trans-1.3-Dichloropropene	BQL	0.0646	50	4/30/2010
Dichlorodifluoromethane	BQL	0.323	50	4/30/2010
Dijsopropyl ether (DIPE)	BQL	0.0646	50	4/30/2010
Ethylbenzene	BQL	0.0646	50	4/30/2010
Hexachlorobutadiene	BQL	0.0646	50	4/30/2010
2-Hexanone	BQL	0.323	50	4/30/2010
lodomethane	BQL	0.0646	50	4/30/2010
lsopropylbenzene	BQL	0.0646	50	4/30/2010

Client Sample ID: SB-4 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-5D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.31 g %Solids: 72.9

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0646		50	4/30/2010
Methylene chloride	BQL	0.323		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.323		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0646		50	4/30/2010
Naphthalene	BQL	0.0646		50	4/30/2010
n-Propyl benzene	BQL	0.0646		50	4/30/2010
Styrene	BQL	0.0646		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0646		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0646		50	4/30/2010
Tetrachloroethene	BQL	0.0646		50	4/30/2010
Toluene	BQL	0.0646		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0646		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0646		50	4/30/2010
Trichloroethene	0.394	0.0646		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0646		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0646		50	4/30/2010
Trichlorofluoromethane	BQL	0.0646		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0646		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0646		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0646		50	4/30/2010
Vinyl chloride	BQL	0.0646		50	4/30/2010
m-,p-Xylene	BQL	0.129		50	4/30/2010
o-Xylene	BQL	0.0646		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0316	105	
Toluene-d8		0.03	0.0275	92	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: for Cop

4-Bromofluorobenzene

Reviewed By:

0.03

0.0288

96

Client Sample ID: SB-4 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-6A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.96 g %Solids: 74.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0562	1	4/28/2010
Benzene	BQL	0.00562	1	4/28/2010
Bromobenzene	BQL	0.00562	1	4/28/2010
Bromochloromethane	BQL	0.00562	1	4/28/2010
Bromodichloromethane	BQL	0.00562	1	4/28/2010
Bromoform	BQL	0.00562	1	4/28/2010
Bromomethane	BQL	0.00562	1	4/28/2010
2-Butanone	BQL	0.0281	1	4/28/2010
n-Butylbenzene	BQL	0.00562	1	4/28/2010
sec-Butylbenzene	BQL	0.00562	1	4/28/2010
tert-Butylbenzene	BQL	0.00562	1	4/28/2010
Carbon disulfide	BQL	0.00562	1	4/28/2010
Carbon tetrachloride	BQL	0.00562	1	4/28/2010
Chlorobenzene	BQL	0.00562	1	4/28/2010
Chloroethane	BQL	0.00562	1	4/28/2010
Chloroform	BQL	0.00562	1	4/28/2010
Chloromethane	BQL	0.00562	1	4/28/2010
2-Chlorotoluene	BQL	0.00562	1	4/28/2010
4-Chlorotoluene	BQL	0.00562	1	4/28/2010
Dibromochloromethane	BQL	0.00562	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0281	1	4/28/2010
Dibromomethane	BQL	0.00562	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00562	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00562	. 1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00562	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00562	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0281	1	4/28/2010
1,1-Dichloroethane	BQL	0.00562	1	4/28/2010
1,1-Dichloroethene	BQL	0.00562	1	4/28/2010
1,2-Dichloroethane	BQL	0.00562	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00562	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00562	1	4/28/2010
1,2-Dichloropropane	BQL	0.00562	1	4/28/2010
1.3-Dichloropropane	BQL	0.00562	1	4/28/2010
2.2-Dichloropropane	BQL	0.00562	1	4/28/2010
1,1-Dichloropropene	BQL	0.00562	1	4/28/2010
cis-1.3-Dichloropropene	BQL	0.00562	1	4/28/2010
trans-1.3-Dichloropropene	BQL	0.00562	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00562	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00562	1	4/28/2010
Ethylbenzene	BQL	0.00562	1	4/28/2010
Hexachlorobutadiene	BQL	0.00562	1	4/28/2010
2-Hexanone	BQL	0.0140	1	4/28/2010
lodomethane	BQL	0.00562	1	4/28/2010

Client Sample ID: SB-4 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-6A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.96 g %Solids: 74.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00562		1	4/28/2010
4-Isopropyltoluene	BQL	0.00562		1	4/28/2010
Methylene chloride	BQL	0.0225		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0140		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00562		1	4/28/2010
Naphthalene	BQL	0.00562		1	4/28/2010
n-Propyl benzene	BQL	0.00562		1	4/28/2010
Styrene	BQL	0.00562		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00562		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00562		1	4/28/2010
Tetrachloroethene	BQL	0.00562		. 1	4/28/2010
Toluene	BQL	0.00562		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00562		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00562		1	4/28/2010
Trichloroethene	0.0290	0.00562		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00562		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00562		1	4/28/2010
Trichlorofluoromethane	BQL	0.00562		[·] 1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00562		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00562		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00562		1	4/28/2010
Vinyl chloride	BQL	0.00562		1	4/28/2010
m-,p-Xylene	BQL	0.0112		1	4/28/2010
o-Xylene	BQL	0.00562		1	4/28/2010
		Spike	Spike	Percent	
		hahh∆	Result	Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0623	125
Toluene-d8	0.05	0.0466	93
4-Bromofluorobenzene	0.05	0.0434	87

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____0いひ

Reviewed By:

Client Sample ID: SB-5 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-7A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 10:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 80.1

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0511	1	4/28/2010
Benzene	BQL	0.00511	1	4/28/2010
Bromobenzene	BQL	0.00511	1	4/28/2010
Bromochloromethane	BQL	0.00511	1	4/28/2010
Bromodichloromethane	BQL	0.00511	1	4/28/2010
Bromoform	BQL	0.00511	1	4/28/2010
Bromomethane	BQL	0.00511	1	4/28/2010
2-Butanone	BQL	0.0256	1	4/28/2010
n-Butylbenzene	BQL	0.00511	1	4/28/2010
sec-Butylbenzene	BQL	0.00511	1	4/28/2010
tert-Butylbenzene	BQL	0.00511	1	4/28/2010
Carbon disulfide	BQL	0.00511	1	4/28/2010
Carbon tetrachloride	BQL	0.00511	1	4/28/2010
Chlorobenzene	BQL	0.00511	. 1	4/28/2010
Chloroethane	BQL	0.00511	1	4/28/2010
Chloroform	BQL	0.00511	1	4/28/2010
Chloromethane	BQL	0.00511	1	4/28/2010
2-Chlorotoluene	BQL	0.00511	1	4/28/2010
4-Chlorotoluene	BQL	0.00511	1	4/28/2010
Dibromochloromethane	BQL	0.00511	1	4/28/2010
1.2-Dibromo-3-chloropropane	BQL	0.0256	1	4/28/2010
Dibromomethane	BQL	0.00511	1	4/28/2010
1.2-Dibromoethane (EDB)	BQL	0.00511	1	4/28/2010
1.2-Dichlorobenzene	BQL	0.00511	1	4/28/2010
1.3-Dichlorobenzene	BQL	0.00511	1	4/28/2010
1.4-Dichlorobenzene	BQL	0.00511	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0256	1	4/28/2010
1.1-Dichloroethane	BQL	0.00511	1	4/28/2010
1,1-Dichloroethene	BQL	0.00511	1	4/28/2010
1.2-Dichloroethane	BQL	0.00511	1	4/28/2010
cis-1.2-Dichloroethene	BQL	0.00511	1	4/28/2010
trans-1.2-dichloroethene	BQL	0.00511	1	4/28/2010
1.2-Dichloropropane	BQL	0.00511	1	4/28/2010
1.3-Dichloropropane	BQL	0.00511	1	4/28/2010
2.2-Dichloropropane	BQL	0.00511	1	4/28/2010
1.1-Dichloropropene	BQL	0.00511	1	4/28/2010
cis-1.3-Dichloropropene	BQL	0.00511	1	4/28/2010
trans-1.3-Dichloropropene	BQL	0.00511	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00511	1	4/28/2010
Dijsopropyl ether (DIPE)	BQL	0.00511	1	4/28/2010
Ethylbenzene	BQL	0.00511	1	4/28/2010
Hexachlorobutadiene	BQL	0.00511	1	4/28/2010
2-Hexanone	BQL	0.0128	1	4/28/2010
lodomethane	BQL	0.00511	1	4/28/2010
	— — — • —			

Client Sample ID: SB-5 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-7A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 80.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00511		1	4/28/2010
4-Isopropyltoluene	BQL	0.00511		1	4/28/2010
Methylene chloride	BQL	0.0205		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0128		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00511		1	4/28/2010
Naphthalene	BQL	0.00511		1	4/28/2010
n-Propyl benzene	BQL	0.00511		1	4/28/2010
Styrene	BQL	0.00511		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00511		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00511		1	4/28/2010
Tetrachloroethene	BQL	0.00511		1	4/28/2010
Toluene	BQL	0.00511		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00511		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00511		1	4/28/2010
Trichloroethene	0.0870	0.00511		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00511		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00511		1	4/28/2010
Trichlorofluoromethane	BQL	0.00511		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00511		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00511		. 1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00511		1	4/28 / 2010
Vinyl chloride	BQL	0.00511		1	4/28/2010
m-,p-Xylene	BQL	0.0102		1	4/28/2010
o-Xylene	BQL	0.00511		1	4/28/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.0655	131	

Toluene-d8 4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Reviewed By: 90

0.05

0.05

0.0464

0.0426

93

85

Client Sample ID: SB-6 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-8A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.88 g %Solids: 72.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0586	1	4/28/2010
Benzene	BQL	0.00586	1	4/28/2010
Bromobenzene	BQL	0.00586	1	4/28/2010
Bromochloromethane	BQL	0.00586	1	4/28/2010
Bromodichloromethane	BQL	0.00586	1	4/28/2010
Bromoform	BQL	0.00586	1	4/28/2010
Bromomethane	BQL	0.00586	1	4/28/2010
2-Butanone	BQL	0.0293	1	4/28/2010
n-Butylbenzene	BQL	0.00586	1	4/28/2010
sec-Butylbenzene	BQL	0.00586	1	4/28/2010
tert-Butylbenzene	BQL	0.00586	1	4/28/2010
Carbon disulfide	BQL	0.00586	1	4/28/2010
Carbon tetrachloride	BQL	0.00586	1	4/28/2010
Chlorobenzene	BQL	0.00586	1	4/28/2010
Chloroethane	BQL	0.00586	1	4/28/2010
Chloroform	BQL	0.00586	1	4/28/2010
Chloromethane	BQL	0.00586	1	4/28/2010
2-Chlorotoluene	BQL	0.00586	1	4/28/2010
4-Chlorotoluene	BQL	0.00586	1	4/28/2010
Dibromochloromethane	BQL	0.00586	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0293	1	4/28/2010
Dibromomethane	BQL	0.00586	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00586	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00586	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00586	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00586	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0293	1	4/28/2010
1,1-Dichloroethane	BQL	0.00586	1	4/28/2010
1,1-Dichloroethene	BQL	0.00586	1	4/28/2010
1,2-Dichloroethane	BQL	0.00586	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00586	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00586	1	4/28/2010
1,2-Dichloropropane	BQL	0.00586	1	4/28/2010
1,3-Dichloropropane	BQL	0.00586	1	4/28/2010
2,2-Dichloropropane	BQL	0.00586	1	4/28/2010
1,1-Dichloropropene	BQL	0.00586	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00586	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00586	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00586	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00586	1	4/28/2010
Ethylbenzene	BQL	0.00586	1	4/28/2010
Hexachlorobutadiene	BQL	0.00586	1	4/28/2010
2-Hexanone	BQL	0.0147	1	4/28/2010
lodomethane	BQL	0.00586	<u>,</u> 1	4/28/2010

Client Sample ID: SB-6 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-8A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.88 g %Solids: 72.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00586		1	4/28/2010
4-Isopropyltoluene	BQL	0.00586		1	4/28/2010
Methylene chloride	BQL	0.0235		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0147		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00586		1	4/28/2010
Naphthalene	BQL	0.00586		1	4/28/2010
n-Propyl benzene	BQL	0.00586		1	4/28/2010
Styrene	BQL	0.00586		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00586		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00586		1	4/28/2010
Tetrachloroethene	BQL	0.00586		1	4/28/2010
Toluene	BQL	0.00586		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00586		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00586		1	4/28/2010
Trichloroethene	BQL	0.00586		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00586		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00586		1	4/28/2010
Trichlorofluoromethane	BQL	0.00586		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00586		. 1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00586		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00586		1	4/28/2010
Vinyl chloride	BQL	0.00586		1	4/28/2010
m-,p-Xylene	BQL	0.0117		1	4/28/2010
o-Xylene	BQL	0.00586		1	4/28/2010
		Spike	Spike	Percent	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0628	126	
Toluene-d8	0.05	0.0462	92	
4-Bromofiuorobenzene	0.05	0.0444	89	

Comments:

Flags:

BQL = Below Quantitation Limits.

0V0 Analyst:

Reviewed By: _____

Client Sample ID: SB-7 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-9D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 10.7 g %Solids: 78.6

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.740	50	4/30/2010
Benzene	BQL	0.0296	50	4/30/2010
Bromobenzene	BQL	0.0296	50	4/30/2010
Bromochloromethane	BQL	0.0296	50	4/30/2010
Bromodichloromethane	BQL	0.0296	50	4/30/2010
Bromoform	BQL	0.0296	50	4/30/2010
Bromomethane	BQL	0.0296	50	4/30/2010
2-Butanone	BQL	0.740	50	4/30/2010
n-Butylbenzene	BQL	0.0296	50	4/30/2010
sec-Butylbenzene	BQL	0.0296	50	4/30/2010
tert-Butylbenzene	BQL	0.0296	50	4/30/2010
Carbon disulfide	BQL	0.0296	50	4/30/2010
Carbon tetrachloride	BQL	0.0296	50	4/30/2010
Chlorobenzene	BQL	0.0296	50	4/30/2010
Chloroethane	BQL	0.0296	50	4/30/2010
Chloroform	BQL	0.0296	50	4/30/2010
Chloromethane	BQL	0.0296	50	4/30/2010
2-Chlorotoluene	BQL	0.0296	50	4/30/2010
4-Chlorotoluene	BQL	0.0296	50	4/30/2010
Dibromochloromethane	BQL	0.0296	50	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.148	50	4/30/2010
Dibromomethane	BQL	0.0296	50	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.0296	50	4/30/2010
1,2-Dichlorobenzene	BQL	0.0296	50	4/30/2010
1,3-Dichlorobenzene	BQL	0.0296	50	4/30/2010
1,4-Dichlorobenzene	BQL	0.0296	50	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.148	50	4/30/2010
1,1-Dichloroethane	BQL	0.0296	50	4/30/2010
1,1-Dichloroethene	BQL	0.0296	50	4/30/2010
1,2-Dichloroethane	BQL	0.0296	50	4/30/2010
cis-1,2-Dichloroethene	BQL	0.0296	50	4/30/2010
trans-1,2-dichloroethene	BQL	0.0296	50	4/30/2010
1,2-Dichloropropane	BQL	0.0296	50	4/30/2010
1,3-Dichloropropane	BQL	0.0296	50	4/30/2010
2,2-Dichloropropane	BQL	0.0296	50	4/30/2010
1,1-Dichloropropene	BQL	0.0296	50	4/30/2010
cis-1,3-Dichloropropene	BQL	0.0296	50	4/30/2010
trans-1,3-Dichloropropene	BQL	0.0296	50	4/30/2010
Dichlorodifluoromethane	BQL	0.148	50	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.0296	50	4/30/2010
Ethylbenzene	BQL	0.0296	50	4/30/2010
Hexachlorobutadiene	BQL	0.0296	50	4/30/2010
2-Hexanone	BQL	0.148	50	4/30/2010
lodomethane	BQL	0.0296	50	4/30/2010
Isopropylbenzene	BQL	0.0296	50	4/30/2010

Client Sample ID: SB-7 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-9D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 10.7 g %Solids: 78.6

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0296		50	4/30/2010
Methylene chloride	BQL	0.148		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.148		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0296		50	4/30/2010
Naphthalene	BQL	0.0296		50	4/30/2010
n-Propyl benzene	BQL	0.0296		50	4/30/2010
Styrene	BQL	0.0296		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0296		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0296		50	4/30/2010
Tetrachloroethene	BQL	0.0296		50	4/30/2010
Toluene	BQL	0.0296		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0296		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0296		50	4/30/2010
Trichloroethene	0.256	0.0296		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0296		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0296		50	4/30/2010
Trichlorofluoromethane	BQL	0.0296		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0296		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0296		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0296		50	4/30/2010
Vinyl chloride	BQL	0.0296		50	4/30/2010
m-,p-Xylene	BQL	0.0592		50	4/30/2010
o-Xylene	BQL	0.0296		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0317	105	
Toluene-d8		0.03	0.0277	92	
4-Bromofluorobenzene		0.03	0.0284	95	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ______

Reviewed By: ______

Client Sample ID: SB-7 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-10A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 11:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.76 g %Solids: 85.1

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0509	1	4/28/2010
Benzene	BQL	0.00509	1	4/28/2010
Bromobenzene	BQL	0.00509	1	4/28/2010
Bromochloromethane	BQL	0.00509	1	4/28/2010
Bromodichloromethane	BQL	0.00509	1	4/28/2010
Bromoform	BQL	0.00509	1	4/28/2010
Bromomethane	BQL	0.00509	1	4/28/2010
2-Butanone	BQL	0.0255	1	4/28/2010
n-Butylbenzene	BQL	0.00509	1	4/28/2010
sec-Butylbenzene	BQL	0.00509	1	4/28/2010
tert-Butylbenzene	BQL	0.00509	. 1	4/28/2010
Carbon disulfide	BQL	0.00509	1	4/28/2010
Carbon tetrachloride	BQL	0.00509	1	4/28/2010
Chlorobenzene	BQL	0.00509	1	4/28/2010
Chloroethane	BQL	0.00509	1	4/28/2010
Chloroform	BQL	0.00509	1	4/28/2010
Chloromethane	BQL	0.00509	1	4/28/2010
2-Chlorotoluene	BQL	0.00509	1	4/28/2010
4-Chlorotoluene	BQL	0.00509	1	4/28/2010
Dibromochloromethane	BOL	0.00509	1	4/28/2010
1.2-Dibromo-3-chloropropane	BQL	0.0255	1	4/28/2010
Dibromomethane	BQL	0.00509	1	4/28/2010
1.2-Dibromoethane (EDB)	BQL	0.00509	1	4/28/2010
1.2-Dichlorobenzene	BQL	0.00509	1	4/28/2010
1.3-Dichlorobenzene	BQL	0.00509	1	4/28/2010
1.4-Dichlorobenzene	BQL	0.00509	1	4/28/2010
trans-1.4-Dichloro-2-butene	BQL	0.0255	1	4/28/2010
1.1-Dichloroethane	BQL	0.00509	1	4/28/2010
1.1-Dichloroethene	BQL	0.00509	1	4/28/2010
1.2-Dichloroethane	BQL	0.00509	1	4/28/2010
cis-1.2-Dichloroethene	BQL	0.00509	1	4/28/2010
trans-1.2-dichloroethene	BQL	0.00509	1	4/28/2010
1.2-Dichloropropane	BQL	0.00509	1	4/28/2010
1.3-Dichloropropane	BQL	0.00509	1	4/28/2010
2.2-Dichloropropane	BOL	0.00509	1	4/28/2010
1.1-Dichloropropene	BQL	0.00509	1	4/28/2010
cis-1.3-Dichloropropene	BQL	0.00509	1	4/28/2010
trans-1.3-Dichloropropene	BQL	0.00509	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00509	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00509	1	4/28/2010
Ethylbenzene	BQL	0.00509	1	4/28/2010
Hexachlorobutadiene	BOL	0.00509	1	4/28/2010
2-Hexanone	BOL	0.0127	1	4/28/2010
lodomethane	BQL	0.00509	1	4/28/2010

Client Sample ID: SB-7 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-10A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 11:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.76 g %Solids: 85.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00509		1	4/28/2010
4-Isopropyltoluene	BQL	0.00509		1	4/28/2010
Methylene chloride	BQL	0.0204		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0127		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00509		1	4/28/2010
Naphthalene	BQL	0.00509		1	4/28/2010
n-Propyl benzene	BQL	0.00509		1	4/28/2010
Styrene	BQL	0.00509		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00509		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00509		1	4/28/2010
Tetrachloroethene	BQL	0.00509		1	4/28/2010
Toluene	BQL	0.00509		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00509		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00509		1	4/28/2010
Trichloroethene	0.0869	0.00509		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00509		1	4/28/2010
1,1,2-Trichloroethane	0.0149	0.00509		1	4/28/2010
Trichlorofluoromethane	BQL	0.00509		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00509		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00509		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00509		1	4/28/2010
Vinyl chloride	BQL	0.00509		1	4/28/2010
m-,p-Xylene	BQL	0.0102		1	4/28/2010
o-Xylene	BQL	0.00509		1	4/28/2010
		Sniko	Spiko	Doroont	

	эріке	эріке	Percent		
	Added	Result	Recovered		
1,2-Dichloroethane-d4	0.05	0.0633	127		
Toluene-d8	0.05	0.0479	96		
4-Bromofluorobenzene	0.05	0.045	90		

Comments:

Flags:

BQL = Below Quantitation Limits.

JVD Analyst: _

Reviewed By:

Client Sample ID: SB-8 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-11D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.48 g %Solids: 74.8

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	6.10	200	4/30/2010
Benzene	BQL	0.244	200	4/30/2010
Bromobenzene	BQL	0.244	200	4/30/2010
Bromochloromethane	BQL	0.244	200	4/30/2010
Bromodichloromethane	BQL	0.244	200	4/30/2010
Bromoform	BQL	0.244	200	4/30/2010
Bromomethane	BQL	0.244	200	4/30/2010
2-Butanone	BQL	6.10	200	4/30/2010
n-Butylbenzene	BQL	0.244	200	4/30/2010
sec-Butylbenzene	BQL	0.244	200	4/30/2010
tert-Butylbenzene	BQL	0.244	200	4/30/2010
Carbon disulfide	BQL	0.244	200	4/30/2010
Carbon tetrachloride	BQL	0.244	200	4/30/2010
Chlorobenzene	BQL	0.244	200	4/30/2010
Chloroethane	BQL	0.244	200	4/30/2010
Chloroform	BQL	0.244	200	4/30/2010
Chloromethane	BQL	0.244	200	4/30/2010
2-Chlorotoluene	BQL	0.244	200	4/30/2010
4-Chlorotoluene	BQL	0.244	200	4/30/2010
Dibromochloromethane	BQL	0.244	200	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	1.22	200	4/30/2010
Dibromomethane	BQL	0.244	200	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.244	200	4/30/2010
1,2-Dichlorobenzene	BQL	0.244	200	4/30/2010
1,3-Dichlorobenzene	BQL	0.244	200	4/30/2010
1,4-Dichlorobenzene	BQL	0.244	200	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	1.22	200	4/30/2010
1,1-Dichloroethane	BQL	0.244	200	4/30/2010
1,1-Dichloroethene	BQL	0.244	200	4/30/2010
1,2-Dichloroethane	BQL	0.244	200	4/30/2010
cis-1,2-Dichloroethene	BQL	0.244	200	4/30/2010
trans-1,2-dichloroethene	BQL	0.244	200	4/30/2010
1,2-Dichloropropane	BQL	0.244	200	4/30/2010
1,3-Dichloropropane	BQL	0.244	200	4/30/2010
2,2-Dichloropropane	BQL	0.244	200	4/30/2010
1,1-Dichloropropene	BQL	0.244	200	4/30/2010
cis-1,3-Dichloropropene	BQL	0.244	200	4/30/2010
trans-1,3-Dichloropropene	BQL	0.244	200	4/30/2010
Dichlorodifluoromethane	BQL	1.22	200	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.244	200	4/30/2010
Ethylbenzene	BQL	0.244	200	4/30/2010
Hexachlorobutadiene	BQL	0.244	200	4/30/2010
2-Hexanone	BQL	1.22	200	4/30/2010
lodomethane	BQL	0.244	200	4/30/2010
isopropylbenzene	BQL	0.244	200	4/30/2010

Client Sample ID: SB-8 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-11D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.48 g %Solids: 74.8

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.244		200	4/30/2010
Methylene chloride	BQL	1.22		200	4/30/2010
4-Methyl-2-pentanone	BQL	1.22		200	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.244		200	4/30/2010
Naphthalene	BQL	0.244		200	4/30/2010
n-Propyl benzene	BQL	0.244		200	4/30/2010
Styrene	BQL	0.244		200	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.244		200	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.244		200	4/30/2010
Tetrachloroethene	BQL	0.244		200	4/30/2010
Toluene	BQL	0.244		200	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.244		200	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.244		200	4/30/2010
Trichloroethene	3.32	0.244		200	4/30/2010
1,1,1-Trichloroethane	BQL	0.244		200	4/30/2010
1,1,2-Trichloroethane	BQL	0.244		200	4/30/2010
Trichlorofluoromethane	BQL	0.244		200	4/30/2010
1,2,3-Trichloropropane	BQL	0.244		200	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.244		200	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.244		200	4/30/2010
Vinyl chloride	BQL	0.244		200	4/30/2010
m-,p-Xylene	BQL	0.488		200	4/30/2010
o-Xylene	BQL	0.244		200	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0314	105	
Toluene-d8		0.03	0.0275	92	
4-Bromofluorobenzene		0.03	0.0281	94	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ____Û√Ù

Reviewed By: <u>999</u>

١

.

Client Sample ID: SB-8 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-12D Lab Project ID: G1037-69 Report Basis: Dry Weight

,

Analyzed By: CLP Date Collected: 4/19/2010 11:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.3 g %Solids: 73.2

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	2.71	100	4/30/2010
Benzene	BQL	0.108	100	4/30/2010
Bromobenzene	BQL	0.108	100	4/30/2010
Bromochloromethane	BQL	0.108	100	4/30/2010
Bromodichloromethane	BQL	0.108	100	4/30/2010
Bromoform	BQL	0.108	100	4/30/2010
Bromomethane	BQL	0.108	100	4/30/2010
2-Butanone	BQL	2.71	100	4/30/2010
n-Butylbenzene	BQL	0.108	100	4/30/2010
sec-Butylbenzene	BQL	0.108	100	4/30/2010
tert-Butylbenzene	BQL	0.108	100	4/30/2010
Carbon disulfide	BQL	0.108	100	4/30/2010
Carbon tetrachloride	BQL	0.108	100	4/30/2010
Chlorobenzene	BQL	0.108	100	4/30/2010
Chloroethane	BQL	0.108	100	4/30/2010
Chloroform	BQL	0.108	100	4/30/2010
Chloromethane	BQL	0.108	100	4/30/2010
2-Chlorotoluene	BQL	0.108	100	4/30/2010
4-Chlorotoluene	BQL	0.108	100	4/30/2010
Dibromochloromethane	BQL	0.108	100	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.542	100	4/30/2010
Dibromomethane	BQL	0.108	100	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.108	100	4/30/2010
1,2-Dichlorobenzene	BQL	0.108	100	4/30/2010
1,3-Dichlorobenzene	BQL	0.108	100	4/30/2010
1,4-Dichlorobenzene	BQL	0.108	100	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.542	100	4/30/2010
1,1-Dichloroethane	BQL	0.108	100	4/30/2010
1,1-Dichloroethene	BQL	0.108	100	4/30/2010
1,2-Dichloroethane	BQL	0.108	100	4/30/2010
cis-1,2-Dichloroethene	BQL	0.108	100	4/30/2010
trans-1,2-dichloroethene	BQL	0.108	100	4/30/2010
1,2-Dichloropropane	BQL	0.108	100	4/30/2010
1,3-Dichloropropane	BQL	0.108	100	4/30/2010
2,2-Dichloropropane	BQL	0.108	100	4/30/2010
1,1-Dichloropropene	BQL	0.108	100	4/30/2010
cis-1,3-Dichloropropene	BQL	0.108	100	4/30/2010
trans-1,3-Dichloropropene	BQL	0.108	100	4/30/2010
Dichlorodifluoromethane	BQL	0.542	100	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.108	100	4/30/2010
Ethylbenzene	BQL	0.108	100	4/30/2010
Hexachlorobutadiene	BQL	0.108	100	4/30/2010
2-Hexanone	BQL	0.542	100	4/30/2010
Iodomethane	BQL	0.108	100	4/30/2010
Isopropylbenzene	BQL	0.108	100	4/30/2010

Client Sample ID: SB-8 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-12D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.3 g %Solids: 73.2

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.108		100	4/30/2010
Methylene chloride	BQL	0.542		100	4/30/2010
4-Methyl-2-pentanone	BQL	0.542		100	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.108		100	4/30/2010
Naphthalene	BQL	0.108		100	4/30/2010
n-Propyl benzene	BQL	0.108		100	4/30/2010
Styrene	BQL	0.108		100	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.108		100	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.108		100	4/30/2010
Tetrachloroethene	BQL	0.108		100	4/30/2010
Toluene	BQL	0.108		100	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.108		100	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.108		100	4/30/2010
Trichloroethene	0.897	0.108		100	4/30/2010
1,1,1-Trichloroethane	BQL	0.108		100	4/30/2010
1,1,2-Trichloroethane	BQL	0.108		100	4/30/2010
Trichlorofluoromethane	BQL	0.108		100	4/30/2010
1,2,3-Trichloropropane	BQL	0.108		100	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.108		100	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.108		100	4/30/2010
Vinyl chloride	BQL	0.108		100	4/30/2010
m-,p-Xylene	BQL	0.217		100	4/30/2010
o-Xylene	BQL	0.108		100	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0324	108	
Toluene-d8		0.03	0.0287	96	
4-Bromofluorobenzene		0.03	0.0281	94	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ____ $\Omega \sqrt{\mathcal{O}}$

Reviewed By: Man

Client Sample ID: SB-8 (18-20) Client Project ID: NCDOT Lab Sample ID: G1037-69-13D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 71.8

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	14.3	500	4/30/2010
Benzene	BQL	0.572	500	4/30/2010
Bromobenzene	BQL	0.572	500	4/30/2010
Bromochloromethane	BQL	0.572	500	4/30/2010
Bromodichloromethane	BQL	0.572	500	4/30/2010
Bromoform	BQL	0.572	500	4/30/2010
Bromomethane	BQL	0.572	500	4/30/2010
2-Butanone	BQL	14.3	500	4/30/2010
n-Butylbenzene	BQL	0.572	500	4/30/2010
sec-Butylbenzene	BQL	0.572	500	4/30/2010
tert-Butylbenzene	BQL	0.572	500	4/30/2010
Carbon disulfide	BQL	0.572	500	4/30/2010
Carbon tetrachloride	BQL	0.572	500	4/30/2010
Chlorobenzene	BQL	0.572	500	4/30/2010
Chloroethane	BQL	0.572	500	4/30/2010
Chloroform	BQL	0.572	500	4/30/2010
Chloromethane	BQL	0.572	500	4/30/2010
2-Chlorotoluene	BQL	0.572	500	4/30/2010
4-Chlorotoluene	BQL	0.572	500	4/30/2010
Dibromochloromethane	BQL	0.572	500	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	2.86	500	4/30/2010
Dibromomethane	BQL	0.572	500	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.572	500	4/30/2010
1,2-Dichlorobenzene	BQL	0.572	500	4/30/2010
1,3-Dichlorobenzene	BQL	0.572	500	4/30/2010
1,4-Dichlorobenzene	BQL	0.572	500	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	2.86	500	4/30/2010
1,1-Dichloroethane	BQL	0.572	500	4/30/2010
1,1-Dichloroethene	BQL	0.572	500	4/30/2010
1,2-Dichloroethane	BQL	0.572	500	4/30/2010
cis-1,2-Dichloroethene	BQL	0.572	500	4/30/2010
trans-1,2-dichloroethene	BQL	0.572	500	4/30/2010
1,2-Dichloropropane	BQL	0.572	500	4/30/2010
1,3-Dichloropropane	BQL	0.572	500	4/30/2010
2,2-Dichloropropane	BQL	0.572	500	4/30/2010
1,1-Dichloropropene	BQL	0.572	500	4/30/2010
cis-1,3-Dichloropropene	BQL	0.572	500	4/30/2010
trans-1,3-Dichloropropene	BQL	0.572	500	4/30/2010
Dichlorodifluoromethane	BQL	2.86	500	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.572	500	4/30/2010
Ethylbenzene	BQL	0.572	500	4/30/2010
Hexachlorobutadiene	BQL	0.572	500	4/30/2010
2-Hexanone	BQL	2.86	500	4/30/2010
lodomethane	BQL	0.572	500	4/30/2010
lsopropylbenzene	BQL	0.572	500	4/30/2010

Client Sample ID: SB-8 (18-20) Client Project ID: NCDOT Lab Sample ID: G1037-69-13D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 71.8

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.572		500	4/30/2010
Methylene chloride	BQL	2.86		500	4/30/2010
4-Methyl-2-pentanone	BQL	2.86		500	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.572		500	4/30/2010
Naphthalene	BQL	0.572		500	4/30/2010
n-Propyl benzene	BQL	0.572		500	4/30/2010
Styrene	BQL	0.572		500	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.572		500	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.572		500	4/30/2010
Tetrachloroethene	BQL	0.572		500	4/30/2010
Toluene	BQL	0.572		500	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.572		500	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.572		500	4/30/2010
Trichloroethene	5.71	0.572		500	4/30/2010
1,1,1-Trichloroethane	BQL	0.572		500	4/30/2010
1,1,2-Trichloroethane	BQL	0.572		500	4/30/2010
Trichlorofluoromethane	BQL	0.572		500	4/30/2010
1,2,3-Trichloropropane	BQL	0.572		500	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.572		500	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.572		500	4/30/2010
Vinyl chloride	BQL	0.572		500	4/30/2010
m-,p-Xylene	BQL	1.14		500	4/30/2010
o-Xylene	BQL	0.572		500	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0317	106	
Toluene-d8		0.03	0.0281	94	

Toluene-d8 4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____0ö___

Reviewed By: ______

0.03

0.0283

94

Client Sample ID: SB-9 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-14A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 12:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.09 g %Solids: 71.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0688	1	4/28/2010
Benzene	BQL	0.00688	1	4/28/2010
Bromobenzene	BQL	0.00688	1	4/28/2010
Bromochloromethane	BQL	0.00688	1	4/28/2010
Bromodichloromethane	BQL	0.00688	1	4/28/2010
Bromoform	BQL	0.00688	1	4/28/2010
Bromomethane	BQL	0.00688	1	4/28/2010
2-Butanone	BQL	0.0344	1	4/28/2010
n-Butylbenzene	BQL	0.00688	1	4/28/2010
sec-Butylbenzene	BQL	0.00688	1	4/28/2010
tert-Butylbenzene	BQL	0.00688	1	4/28/2010
Carbon disulfide	BQL	0.00688	1	4/28/2010
Carbon tetrachloride	BQL	0.00688	1	4/28/2010
Chlorobenzene	BQL	0.00688	1	4/28/2010
Chloroethane	BQL	0.00688	1	4/28/2010
Chloroform	BQL	0.00688	1	4/28/2010
Chloromethane	BQL	0.00688	1	4/28/2010
2-Chlorotoluene	BQL	0.00688	1	4/28/2010
4-Chlorotoluene	BQL	0.00688	1	4/28/2010
Dibromochloromethane	BQL	0.00688	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0344	1	4/28/2010
Dibromomethane	BQL	0.00688	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00688	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00688	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00688	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00688	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0344	1	4/28/2010
1,1-Dichloroethane	BQL	0.00688	1	4/28/2010
1,1-Dichloroethene	BQL	0.00688	1	4/28/2010
1,2-Dichloroethane	BQL	0.00688	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00688	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00688	1	4/28/2010
1,2-Dichloropropane	BQL	0.00688	1	4/28/2010
1,3-Dichloropropane	BQL	0.00688	1	4/28/2010
2,2-Dichloropropane	BQL	0.00688	1	4/28/2010
1,1-Dichloropropene	BQL	0.00688	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00688	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00688	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00688	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00688	1	4/28/2010
Ethylbenzene	BQL	0.00688	1	4/28/2010
Hexachlorobutadiene	BQL	0.00688	1	4/28/2010
2-Hexanone	BQL	0.0172	1	4/28/2010
lodomethane	BQL	0.00688	1	4/28/2010

Client Sample ID: SB-9 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-14A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 12:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.09 g %Solids: 71.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00688		1	4/28/2010
4-Isopropyltoluene	BQL	0.00688		1	4/28/2010
Methylene chloride	BQL	0.0275		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0172		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00688		1	4/28/2010
Naphthalene	BQL	0.00688		1	4/28/2010
n-Propyl benzene	BQL	0.00688		1	4/28/2010
Styrene	BQL	0.00688		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00688		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00688		1	4/28/2010
Tetrachloroethene	BQL	0.00688		1	4/28/2010
Toluene	BQL	0.00688		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00688		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00688		1	4/28/2010
Trichloroethene	BQL	0.00688		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00688		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00688		1	4/28/2010
Trichlorofluoromethane	BQL	0.00688		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00688		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00688		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00688		1	4/28/2010
Vinyl chloride	BQL	0.00688		1	4/28/2010
m-,p-Xylene	BQL	0.0138		1	4/28/2010
o-Xylene	BQL	0.00688		1	4/28/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0603	121
Toluene-d8	0.05	0.0475	95
4-Bromofluorobenzene	0.05	0.045	90

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ____ <u>NVU</u>

Reviewed By:

Client Sample ID: SB-10 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-15D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 12:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.17 g %Solids: 75.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.61	50	4/30/2010
Benzene	BQL	0.0644	50	4/30/2010
Bromobenzene	BQL	0.0644	50	4/30/2010
Bromochloromethane	BQL	0.0644	50	4/30/2010
Bromodichloromethane	BQL	0.0644	50	4/30/2010
Bromoform	BQL	0.0644	50	4/30/2010
Bromomethane	BQL	0.0644	50	4/30/2010
2-Butanone	BQL	1.61	50	4/30/2010
n-Butylbenzene	BQL	0.0644	50	4/30/2010
sec-Butylbenzene	BQL	0.0644	50	4/30/2010
tert-Butylbenzene	BQL	0.0644	50	4/30/2010
Carbon disulfide	BQL	0.0644	50	4/30/2010
Carbon tetrachloride	BQL	0.0644	50	4/30/2010
Chlorobenzene	BQL	0.0644	50	4/30/2010
Chloroethane	BQL	0.0644	50	4/30/2010
Chloroform	BQL	0.0644	50	4/30/2010
Chloromethane	BQL	0.0644	50	4/30/2010
2-Chlorotoluene	BQL	0.0644	50	4/30/2010
4-Chlorotoluene	BQL	0.0644	50	4/30/2010
Dibromochloromethane	BQL	0.0644	50	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.322	50	4/30/2010
Dibromomethane	BQL	0.0644	50	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.0644	50	4/30/2010
1,2-Dichlorobenzene	BQL	0.0644	50	4/30/2010
1,3-Dichlorobenzene	BQL	0.0644	50	4/30/2010
1,4-Dichlorobenzene	BQL	0.0644	50	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.322	50	4/30/2010
1,1-Dichloroethane	BQL	0.0644	50	4/30/2010
1,1-Dichloroethene	BQL	0.0644	50	4/30/2010
1,2-Dichloroethane	BQL	0.0644	50	4/30/2010
cis-1,2-Dichloroethene	BQL	0.0644	50	4/30/2010
trans-1,2-dichloroethene	BQL	0.0644	50	4/30/2010
1,2-Dichloropropane	BQL	0.0644	50	4/30/2010
1,3-Dichloropropane	BQL	0.0644	50	4/30/2010
2,2-Dichloropropane	BQL	0.0644	50	4/30/2010
1,1-Dichloropropene	BQL	0.0644	50	4/30/2010
cis-1,3-Dichloropropene	BQL	0.0644	50	4/30/2010
trans-1,3-Dichloropropene	BQL	0.0644	50	4/30/2010
Dichlorodifluoromethane	BQL	0.322	50	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.0644	50	4/30/2010
Ethylbenzene	BQL	0.0644	50	4/30/2010
Hexachlorobutadiene	BQL	0.0644	50	4/30/2010
2-Hexanone	BQL	0.322	50	4/30/2010
lodomethane	BQL	0.0644	50	4/30/2010
Isopropylbenzene	BQL	0.0644	50	4/30/2010

Client Sample ID: SB-10 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-15D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.17 g %Solids: 75.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0644		50	4/30/2010
Methylene chloride	BQL	0.322		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.322		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0644		50	4/30/2010
Naphthalene	BQL	0.0644		50	4/30/2010
n-Propyl benzene	BQL	0.0644		50	4/30/2010
Styrene	BQL	0.0644		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0644		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0644		50	4/30/2010
Tetrachloroethene	BQL	0.0644		50	4/30/2010
Toluene	BQL	0.0644		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0644		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0644		50	4/30/2010
Trichloroethene	0.341	0.0644		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0644		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0644		50	4/30/2010
Trichlorofluoromethane	BQL	0.0644		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0644		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0644		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0644		50	4/30/2010
Vinyl chloride	BQL	0.0644		50	4/30/2010
m-,p-Xylene	BQL	0.129		50	4/30/2010
o-Xylene	BQL	0.0644		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0343	114	
Toluene-d8		0.03	0.0289	96	

Toluene-d8 4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: <u>0</u>VO

Reviewed By: ______

0.03

0.0284

95

Client Sample ID: SB-11 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-16A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 13:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.34 g %Solids: 73.2

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0785	1	4/28/2010
Benzene	BQL	0.00785	1	4/28/2010
Bromobenzene	BQL	0.00785	1	4/28/2010
Bromochloromethane	BQL	0.00785	1	4/28/2010
Bromodichloromethane	BQL	0.00785	1	4/28/2010
Bromoform	BQL	0.00785	1	4/28/2010
Bromomethane	BQL	0.00785	1	4/28/2010
2-Butanone	BQL	0.0392	1	4/28/2010
n-Butylbenzene	BQL	0.00785	1	4/28/2010
sec-Butylbenzene	BQL	0.00785	1	4/28/2010
tert-Butylbenzene	BQL	0.00785	1	4/28/2010
Carbon disulfide	BQL	0.00785	1	4/28/2010
Carbon tetrachloride	BQL	0.00785	1	4/28/2010
Chlorobenzene	BQL	0.00785	1	4/28/2010
Chloroethane	BQL	0.00785	1	4/28/2010
Chloroform	BQL	0.00785	1	4/28/2010
Chloromethane	BQL	0.00785	1	4/28/2010
2-Chlorotoluene	BQL	0.00785	1	4/28/2010
4-Chlorotoluene	BQL	0.00785	1	4/28/2010
Dibromochloromethane	BQL	0.00785	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0392	1	4/28/2010
Dibromomethane	BQL	0.00785	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00785	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00785	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00785	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00785	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0392	1	4/28/2010
1,1-Dichloroethane	BQL	0.00785	1	4/28/2010
1,1-Dichloroethene	BQL	0.00785	1	4/28/2010
1,2-Dichloroethane	BQL	0.00785	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00785	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00785	1	4/28/2010
1,2-Dichloropropane	BQL	0.00785	1	4/28/2010
1,3-Dichloropropane	BQL	0.00785	1	4/28/2010
2,2-Dichloropropane	BQL	0.00785	1	4/28/2010
1,1-Dichloropropene	BQL	0.00785	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00785	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00785	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00785	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00785	1	4/28/2010
Ethylbenzene	BQL	0.00785	1	4/28/2010
Hexachlorobutadiene	BQL	0.00785	1	4/28/2010
2-Hexanone	BQL	0.0196	1	4/28/2010
lodomethane	BQL	0.00785	1	4/28/2010

Client Sample ID: SB-11 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-16A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 13:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.34 g %Solids: 73.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00785		1	4/28/2010
4-Isopropyltoluene	BQL	0.00785		1	4/28/2010
Methylene chloride	BQL	0.0314		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0196		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00785		1	4/28/2010
Naphthalene	BQL	0.00785		1	4/28/2010
n-Propyl benzene	BQL	0.00785		1	4/28/2010
Styrene	BQL	0.00785		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00785		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00785		1	4/28/2010
Tetrachloroethene	BQL	0.00785		1	4/28/2010
Toluene	BQL	0.00785		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00785		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00785		1	4/28/2010
Trichloroethene	0.0257	0.00785		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00785		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00785		1	4/28/2010
Trichlorofluoromethane	BQL	0.00785		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00785		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00785		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00785		1	4/28/2010
Vinyl chloride	BQL	0.00785		1	4/28/2010
m-,p-Xylene	BQL	0.0157		1	4/28/2010
o-Xylene	BQL	0.00785		1	4/28/2010
		Spike	Spike	Percent	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.064	128
Toluene-d8	0.05	0.0476	95
4-Bromofluorobenzene	0.05	0.0452	90

Comments:

Flags:

BQL = Below Quantitation Limits.

OVO Analyst:

Reviewed By:

.

Client Sample ID: SB-12 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-17A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4 g %Solids: 77.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0807	1	4/29/2010
Benzene	BQL	0.00807	1	4/29/2010
Bromobenzene	BQL	0.00807	1	4/29/2010
Bromochloromethane	BQL	0.00807	. 1	4/29/2010
Bromodichloromethane	BQL	0.00807	1	4/29/2010
Bromoform	BQL	0.00807	1	4/29/2010
Bromomethane	BQL	0.00807	1	4/29/2010
2-Butanone	BQL	0.0403	- 1	4/29/2010
n-Butylbenzene	BQL	0.00807	1	4/29/2010
sec-Butylbenzene	BQL	0.00807	1	4/29/2010
tert-Butylbenzene	BQL	0.00807	1	4/29/2010
Carbon disulfide	BQL	0.00807	1	4/29/2010
Carbon tetrachloride	BQL	0.00807	. 1	4/29/2010
Chlorobenzene	BQL	0.00807	1	4/29/2010
Chloroethane	BQL	0.00807	1	4/29/2010
Chloroform	BQL	0.00807	1	4/29/2010
Chloromethane	BQL	0.00807	1	4/29/2010
2-Chlorotoluene	BQL	0.00807	1	4/29/2010
4-Chlorotoluene	BQL	0.00807	1	4/29/2010
Dibromochloromethane	BQL	0.00807	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0403	1	4/29/2010
Dibromomethane	BQL	0.00807	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00807	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00807	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00807	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00807	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0403	1	4/29/2010
1,1-Dichloroethane	BQL	0.00807	1	4/29/2010
1,1-Dichloroethene	BQL	0.00807	1	4/29/2010
1,2-Dichloroethane	BQL	0.00807	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00807	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00807	1	4/29/2010
1,2-Dichloropropane	BQL	0.00807	1	4/29/2010
1,3-Dichloropropane	BQL	0.00807	1	4/29/2010
2,2-Dichloropropane	BQL	0.00807	1	4/29/2010
1,1-Dichloropropene	BQL	0.00807	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00807	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00807	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00807	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00807	1	4/29/2010
Ethylbenzene	BQL	0.00807	1	4/29/2010
Hexachlorobutadiene	BQL	0.00807	1	4/29/2010
2-Hexanone	BQL	0.0202	1	4/29/2010
lodomethane	BQL	0.00807	1	4/29/2010

Client Sample ID: SB-12 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-17A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4 g %Solids: 77.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00807		1	4/29/2010
4-Isopropyltoluene	BQL	0.00807		1	4/29/2010
Methylene chloride	BQL	0.0323		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0202		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00807		1	4/29/2010
Naphthalene	BQL	0.00807		1	4/29/2010
n-Propyl benzene	BQL	0.00807		1	4/29/2010
Styrene	BQL	0.00807		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00807		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00807		1	4/29/2010
Tetrachloroethene	BQL	0.00807		1	4/29/2010
Toluene	BQL	0.00807		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00807		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00807		1	4/29/2010
Trichloroethene	0.0118	0.00807		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00807		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00807		1	4/29/2010
Trichlorofluoromethane	BQL	0.00807		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00807		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00807		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00807		1	4/29/2010
Vinyl chloride	BQL	0.00807		1	4/29/2010
m-,p-Xylene	BQL	0.0161		1	4/29/2010
o-Xylene	BQL	0.00807		1	4/29/2010
		Spike Addod	Spike Boowlt	Percent	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0614	123
Toluene-d8	0.05	0.0472	94
4-Bromofluorobenzene	0.05	0.0443	89

Comments:

Flags:

BQL = Below Quantitation Limits.

(JVO) Analyst:

Reviewed By:

Client Sample ID: SB-13 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-18D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 10:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.46 g %Solids: 77.5

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.25	50	5/4/2010
Benzene	BQL	0.0500	50	5/4/2010
Bromobenzene	BQL	0.0500	50	5/4/2010
Bromochloromethane	BQL	0.0500	50	5/4/2010
Bromodichloromethane	BQL	0.0500	50	5/4/2010
Bromoform	BQL	0.0500	50	5/4/2010
Bromomethane	BQL	0.0500	50	5/4/2010
2-Butanone	BQL	1.25	50	5/4/2010
n-Butylbenzene	BQL	0.0500	50	5/4/2010
sec-Butylbenzene	BQL	0.0500	50	5/4/2010
tert-Butylbenzene	BQL	0.0500	50	5/4/2010
Carbon disulfide	BQL	0.0500	50	5/4/2010
Carbon tetrachloride	BQL	0.0500	50	5/4/2010
Chlorobenzene	BQL	0.0500	50	5/4/2010
Chloroethane	BQL	0.0500	50	5/4/2010
Chloroform	BQL	0.0500	50	5/4/2010
Chloromethane	BQL	0.0500	50	5/4/2010
2-Chlorotoluene	BQL	0.0500	50	5/4/2010
4-Chlorotoluene	BQL	0.0500	50	5/4/2010
Dibromochloromethane	BQL	0.0500	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.250	50	5/4/2010
Dibromomethane	BQL	0.0500	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0500	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0500	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0500	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0500	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.250	50	5/4/2010
1,1-Dichloroethane	BQL	0.0500	50	5/4/2010
1,1-Dichloroethene	BQL	0.0500	50	5/4/2010
1,2-Dichloroethane	BQL	0.0500	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0500	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0500	50	5/4/2010
1,2-Dichloropropane	BQL	0.0500	50	5/4/2010
1,3-Dichloropropane	BQL	0.0500	50	5/4/2010
2,2-Dichloropropane	BQL	0.0500	50	5/4/2010
1,1-Dichloropropene	BQL	0.0500	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0500	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0500	50	5/4/2010
Dichlorodifluoromethane	BQL	0.250	50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0500	50	5/4/2010
Ethylbenzene	BQL	0.0500	50	5/4/2010
Hexachlorobutadiene	BQL	0.0500	50	5/4/2010
2-Hexanone	BQL	0.250	50	5/4/2010
lodomethane	BQL	0.0500	50	5/4/2010
lsopropylbenzene	BQL	0.0500	50	5/4/2010

Client Sample ID: SB-13 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-18D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/20/2010 10:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.46 g %Solids: 77.5

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0500		50	5/4/2010
Methylene chloride	BQL	0.250		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.250		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0500		50	5/4/2010
Naphthalene	BQL	0.0500		50	5/4/2010
n-Propyl benzene	BQL	0.0500		50	5/4/2010
Styrene	BQL	0.0500		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0500		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0500		50	5/4/2010
Tetrachloroethene	BQL	0.0500		50	5/4/2010
Toluene	BQL	0.0500		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0500		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0500		50	5/4/2010
Trichloroethene	0.255	0.0500		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0500		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0500		50	5/4/2010
Trichlorofluoromethane	BQL	0.0500		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0500		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0500		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0500		50	5/4/2010
Vinyl chloride	BQL	0.0500		50	5/4/2010
m-,p-Xylene	BQL	0.0999		50	5/4/2010
o-Xylene	BQL '	0.0500		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0327	109	
Toluene-d8		0.03	0.0284	95	
4-Bromofluorobenzene		0.03	0.0295	98	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: <u>)</u>VO

Reviewed By:

Client Sample ID: SB-14 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-19D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.06 g %Solids: 73.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.41	50	5/4/2010
Benzene	BQL	0.0565	50	5/4/2010
Bromobenzene	BQL	0.0565	50	5/4/2010
Bromochloromethane	BQL	0.0565	50	5/4/2010
Bromodichloromethane	BQL	0.0565	50	5/4/2010
Bromoform	BQL	0.0565	50	5/4/2010
Bromomethane	BQL	0.0565	50	5/4/2010
2-Butanone	BQL	1.41	50	5/4/2010
n-Butylbenzene	BQL	0.0565	50	5/4/2010
sec-Butylbenzene	BQL	0.0565	50	5/4/2010
tert-Butylbenzene	BQL	0.0565	50	5/4/2010
Carbon disulfide	BQL	0.0565	50	5/4/2010
Carbon tetrachloride	BQL	0.0565	50	5/4/2010
Chlorobenzene	BQL	0.0565	50	5/4/2010
Chloroethane	BQL	0.0565	50	5/4/2010
Chloroform	BQL	0.0565	50	5/4/2010
Chloromethane	BQL	0.0565	50	5/4/2010
2-Chlorotoluene	BQL	0.0565	50	5/4/2010
4-Chlorotoluene	BQL	0.0565	50	5/4/2010
Dibromochloromethane	BQL	0.0565	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.283	50	5/4/2010
Dibromomethane	BQL	0.0565	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0565	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0565	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0565	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0565	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.283	50	5/4/2010
1,1-Dichloroethane	BQL	0.0565	50	5/4/2010
1,1-Dichloroethene	BQL	0.0565	50	5/4/2010
1,2-Dichloroethane	BQL	0.0565	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0565	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0565	50	5/4/2010
1,2-Dichloropropane	BQL	0.0565	50	5/4/2010
1,3-Dichloropropane	BQL	0.0565	50	5/4/2010
2,2-Dichloropropane	BQL	0.0565	50	5/4/2010
1,1-Dichloropropene	BQL	0.0565	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0565	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0565	50	5/4/2010
Dichlorodifluoromethane	BQL	0.283	50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0565	50	5/4/2010
Ethylbenzene	BQL	0.0565	50	5/4/2010
Hexachlorobutadiene	BQL	0.0565	50	5/4/2010
2-Hexanone	BQL	0.283	50	5/4/2010
lodomethane	BQL	0.0565	50	5/4/2010
Isopropylbenzene	BQL	0.0565	50	5/4/2010

Client Sample ID: SB-14 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-19D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.06 g %Solids: 73.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0565		50	5/4/2010
Methylene chloride	BQL	0.283		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.283		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0565		50	5/4/2010
Naphthalene	BQL	0.0565		50	5/4/2010
n-Propyl benzene	BQL	0.0565		50	5/4/2010
Styrene	BQL	0.0565		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0565		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0565		50	5/4/2010
Tetrachloroethene	BQL	0.0565		50	5/4/2010
Toluene	BQL	0.0565		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0565		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0565		50	5/4/2010
Trichloroethene	0.995	0.0565		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0565		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0565		50	5/4/2010
Trichlorofluoromethane	BQL	0.0565		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0565		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0565		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0565		50	5/4/2010
Vinyl chloride	BQL	0.0565		50	5/4/2010
m-,p-Xylene	BQL	0.113		50	5/4/2010
o-Xylene	BQL	0.0565		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0318	106	
Toluene-d8		0.03	0.0274	91	

4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____QVO

Reviewed By: 77

0.03

0.0288

96

Client Sample ID: SB-14 (16-18) Client Project ID: NCDOT Lab Sample ID: G1037-69-20D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.5 g %Solids: 71.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	5.41	200	5/4/2010
Benzene	BQL	0.217	200	5/4/2010
Bromobenzene	BQL	0.217	200	5/4/2010
Bromochloromethane	BQL	0.217	200	5/4/2010
Bromodichloromethane	BQL	0.217	200	5/4/2010
Bromoform	BQL	0.217	200	5/4/2010
Bromomethane	BQL	0.217	200	5/4/2010
2-Butanone	BQL	5.41	200	5/4/2010
n-Butylbenzene	BQL	0.217	200	5/4/2010
sec-Butylbenzene	BQL	0.217	200	5/4/2010
tert-Butylbenzene	BQL	0.217	200	5/4/2010
Carbon disulfide	BQL	0.217	200	5/4/2010
Carbon tetrachloride	BQL	0.217	200	5/4/2010
Chlorobenzene	BQL	0.217	200	5/4/2010
Chloroethane	BQL	0.217	200	5/4/2010
Chloroform	BQL	0.217	200	5/4/2010
Chloromethane	BQL	0.217	200	5/4/2010
2-Chlorotoluene	BQL	0.217	200	5/4/2010
4-Chlorotoluene	BQL	0.217	200	5/4/2010
Dibromochloromethane	BQL	0.217	200	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	1.08	200	5/4/2010
Dibromomethane	BQL	0.217	200	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.217	200	5/4/2010
1,2-Dichlorobenzene	BQL	0.217	200	5/4/2010
1,3-Dichlorobenzene	BQL	0.217	200	5/4/2010
1,4-Dichlorobenzene	BQL	0.217	200	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	1.08	200	5/4/2010
1,1-Dichloroethane	BQL	0.217	200	5/4/2010
1,1-Dichloroethene	BQL	0.217	200	5/4/2010
1,2-Dichloroethane	BQL	0.217	200	5/4/2010
cis-1,2-Dichloroethene	BQL	0.217	200	5/4/2010
trans-1,2-dichloroethene	BQL	0.217	200	5/4/2010
1,2-Dichloropropane	BQL	0.217	200	5/4/2010
1,3-Dichloropropane	BQL	0.217	200	5/4/2010
2,2-Dichloropropane	BQL	0.217	200	5/4/2010
1,1-Dichloropropene	BQL	0.217	200	5/4/2010
cis-1,3-Dichloropropene	BQL	0.217	200	5/4/2010
trans-1,3-Dichloropropene	BQL	0.217	200	5/4/2010
Dichlorodifluoromethane	BQL	1.08	200	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.217	200	5/4/2010
Ethylbenzene	BQL	0.217	200	5/4/2010
Hexachlorobutadiene	BQL	0.217	200	5/4/2010
2-Hexanone	BQL	1.08	200	5/4/2010
lodomethane	BQL	0.217	200	5/4/2010
Isopropylbenzene	BQL	0.217	200	5/4/2010
Client Sample ID: SB-14 (16-18) Client Project ID: NCDOT Lab Sample ID: G1037-69-20D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/20/2010 11:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.5 g %Solids: 71.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.217		200	5/4/2010
Methylene chloride	BQL	1.08		200	5/4/2010
4-Methyl-2-pentanone	BQL	1.08		200	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.217		200	5/4/2010
Naphthalene	BQL	0.217		200	5/4/2010
n-Propyl benzene	BQL	0.217		200	5/4/2010
Styrene	BQL	0.217		200	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.217		200	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.217		200	5/4/2010
Tetrachloroethene	BQL	0.217		200	5/4/2010
Toluene	BQL	0.217		200	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.217		200	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.217		200	5/4/2010
Trichloroethene	2.89	0.217		200	5/4/2010
1,1,1-Trichloroethane	BQL	0.217		200	5/4/2010
1,1,2-Trichloroethane	BQL	0.217		200	5/4/2010
Trichlorofluoromethane	BQL	0.217		200	5/4/2010
1,2,3-Trichloropropane	BQL	0.217		200	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.217		200	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.217		200	5/4/2010
Vinyl chloride	BQL	0.217		200	5/4/2010
m-,p-Xylene	BQL	0.433		200	5/4/2010
o-Xylene	BQL	0.217		200	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0318	106	
Toluene-d8		0.03	0.0276	92	

4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ______0\d

Reviewed By: 200

0.03

0.03

100

Client Sample ID: SB-15 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-21A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.01 g %Solids: 82.2

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0505	1	4/29/2010
Benzene	BQL	0.00505	1	4/29/2010
Bromobenzene	BQL	0.00505	1	4/29/2010
Bromochloromethane	BQL	0.00505	1	4/29/2010
Bromodichloromethane	BQL	0.00505	1	4/29/2010
Bromoform	BQL	0.00505	1	4/29/2010
Bromomethane	BQL	0.00505	1	4/29/2010
2-Butanone	BQL	0.0253	1	4/29/2010
n-Butylbenzene	BQL	0.00505	1	4/29/2010
sec-Butylbenzene	BQL	0.00505	1	4/29/2010
tert-Butylbenzene	BQL	0.00505	1.	4/29/2010
Carbon disulfide	BQL	0.00505	1	4/29/2010
Carbon tetrachloride	BQL	0.00505	1	4/29/2010
Chlorobenzene	BQL	0.00505	1	4/29/2010
Chloroethane	BQL	0.00505	1	4/29/2010
Chloroform	BQL	0.00505	1	4/29/2010
Chloromethane	BQL	0.00505	1	4/29/2010
2-Chlorotoluene	BQL	0.00505	1	4/29/2010
4-Chlorotoluene	BQL	0.00505	1	4/29/2010
Dibromochloromethane	BQL	0.00505	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0253	1	4/29/2010
Dibromomethane	BQL	0.00505	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00505	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00505	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00505	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00505	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0253	1	4/29/2010
1,1-Dichloroethane	BQL	0.00505	1	4/29/2010
1,1-Dichloroethene	BQL	0.00505	1	4/29/2010
1,2-Dichloroethane	BQL	0.00505	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00505	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00505	1	4/29/2010
1,2-Dichloropropane	BQL	0.00505	1	4/29/2010
1,3-Dichloropropane	BQL	0.00505	1	4/29/2010
2,2-Dichloropropane	BQL	0.00505	1	4/29/2010
1,1-Dichloropropene	BQL	0.00505	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00505	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00505	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00505	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00505	1	4/29/2010
Ethylbenzene	BQL	0.00505	1	4/29/2010
Hexachlorobutadiene	BQL	0.00505	1	4/29/2010
2-Hexanone	BQL	0.0126	1	4/29/2010
lodomethane	BQL	0.00505	1	4/29/2010

Client Sample ID: SB-15 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-21A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.01 g %Solids: 82.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00505		1	4/29/2010
4-Isopropyltoluene	BQL	0.00505		1	4/29/2010
Methylene chloride	BQL	0.0202		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0126		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00505		1	4/29/2010
Naphthalene	BQL	0.00505		1	4/29/2010
n-Propyl benzene	BQL	0.00505		1	4/29/2010
Styrene	BQL	0.00505		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00505		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00505		1	4/29/2010
Tetrachloroethene	BQL	0.00505		1	4/29/2010
Toluene	BQL	0.00505		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00505		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00505		1	4/29/2010
Trichloroethene	BQL	0.00505		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00505		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00505		1	4/29/2010
Trichlorofluoromethane	BQL	0.00505		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00505		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00505		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00505		1	4/29/2010
Vinyl chloride	BQL	0.00505		1	4/29/2010
m-,p-Xylene	BQL	0.0101		1	4/29/2010
o-Xylene	BQL	0.00505		1	4/29/2010
		Spike	Spike	Percent	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0647	129	
Toluene-d8	0.05	0.0474	95	
4-Bromofluorobenzene	0.05	0.0444	89	

Comments:

Flags:

BQL = Below Quantitation Limits.

DVO Analyst:

Reviewed By: ______

Client Sample ID: SB-16 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-22A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 12:20 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 3.42 g %Solids: 75.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0969	1	4/29/2010
Benzene	BQL	0.00969	1	4/29/2010
Bromobenzene	BQL	0.00969	1	4/29/2010
Bromochloromethane	BQL	0.00969	1	4/29/2010
Bromodichloromethane	BQL	0.00969	1	4/29/2010
Bromoform	BQL	0.00969	1	4/29/2010
Bromomethane	BQL	0.00969	1	4/29/2010
2-Butanone	BQL	0.0485	1	4/29/2010
n-Butylbenzene	BQL	0.00969	1	4/29/2010
sec-Butylbenzene	BQL	0.00969	1	4/29/2010
tert-Butylbenzene	BQL	0.00969	1	4/29/2010
Carbon disulfide	BQL	0.00969	.1	4/29/2010
Carbon tetrachloride	BQL	0.00969	1	4/29/2010
Chlorobenzene	BQL	0.00969	1	4/29/2010
Chloroethane	BQL	0.00969	1	4/29/2010
Chloroform	BQL	0.00969	1	4/29/2010
Chloromethane	BQL	0.00969	1	4/29/2010
2-Chlorotoluene	BQL	0.00969	1	4/29/2010
4-Chlorotoluene	BQL	0.00969	1	4/29/2010
Dibromochloromethane	BQL	0.00969	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0485	1	4/29/2010
Dibromomethane	BQL	0.00969	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00969	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00969	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00969	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00969	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0485	1	4/29/2010
1,1-Dichloroethane	BQL	0.00969	1	4/29/2010
1,1-Dichloroethene	BQL	0.00969	1	4/29/2010
1,2-Dichloroethane	BQL	0.00969	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00969	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00969	1	4/29/2010
1,2-Dichloropropane	BQL	0.00969	1	4/29/2010
1,3-Dichloropropane	BQL	0.00969	1	4/29/2010
2,2-Dichloropropane	BQL	0.00969	1	4/29/2010
1,1-Dichloropropene	BQL	0.00969	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00969	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00969	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00969	<u>`</u> 1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00969	1	4/29/2010
Ethylbenzene	BQL	0.00969	1	4/29/2010
Hexachlorobutadiene	BQL	0.00969	1	4/29/2010
2-Hexanone	BQL	0.0242	1	4/29/2010
lodomethane	BQL	0.00969	1	4/29/2010

Client Sample ID: SB-16 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-22A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 12:20 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 3.42 g %Solids: 75.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00969		1	4/29/2010
4-Isopropyltoluene	BQL	0.00969		1	4/29/2010
Methylene chloride	BQL	0.0388		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0242		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00969		1	4/29/2010
Naphthalene	BQL	0.00969		1	4/29/2010
n-Propyl benzene	BQL	0.00969		1	4/29/2010
Styrene	BQL	0.00969		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00969		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00969		1	4/29/2010
Tetrachloroethene	BQL	0.00969		1	4/29/2010
Toluene	BQL	0.00969		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00969		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00969		1	4/29/2010
Trichloroethene	BQL	0.00969		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00969		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00969		1	4/29/2010
Trichlorofluoromethane	BQL	0.00969		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00969		<u> </u>	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00969		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00969		1	4/29/2010
Vinyl chloride	BQL	0.00969		1	4/29/2010
m-,p-Xylene	BQL	0.0194		1	4/29/2010
o-Xylene	BQL	0.00969		1	4/29/2010
		Spike	Spike	Percent	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0636	127	
Toluene-d8	0.05	0.0473	95	
4-Bromofluorobenzene	0.05	0.0426	85	

Comments:

Flags:

BQL = Below Quantitation Limits.

0v0 Analyst: ____

Reviewed By:

Client Sample ID: SB-17 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-23A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 13:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.67 g %Solids: 77.1

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0571	1	4/29/2010
Benzene	BQL	0.00571	1	4/29/2010
Bromobenzene	BQL	0.00571	1	4/29/2010
Bromochloromethane	BQL	0.00571	1	4/29/2010
Bromodichloromethane	BQL	0.00571	1	4/29/2010
Bromoform	BQL	0.00571	1	4/29/2010
Bromomethane	BQL	0.00571	1	4/29/2010
2-Butanone	BQL	0.0285	. 1	4/29/2010
n-Butylbenzene	BQL	0.00571	1	4/29/2010
sec-Butylbenzene	BQL	0.00571	1	4/29/2010
tert-Butylbenzene	BQL	0.00571	1	4/29/2010
Carbon disulfide	BQL	0.00571	1	4/29/2010
Carbon tetrachloride	BQL	0.00571	1	4/29/2010
Chlorobenzene	BQL	0.00571	1	4/29/2010
Chloroethane	BQL	0.00571	1	4/29/2010
Chloroform	BQL	0.00571	1	4/29/2010
Chloromethane	BQL	0.00571	1	4/29/2010
2-Chlorotoluene	BQL	0.00571	1	4/29/2010
4-Chlorotoluene	BQL	0.00571	1	4/29/2010
Dibromochloromethane	BQL	0.00571	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0285	. 1	4/29/2010
Dibromomethane	BQL	0.00571	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00571	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00571	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00571	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00571	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0285	1	4/29/2010
1.1-Dichloroethane	BQL	0.00571	1	4/29/2010
1,1-Dichloroethene	BQL	0.00571	1	4/29/2010
1.2-Dichloroethane	BQL	0.00571	1	4/29/2010
cis-1.2-Dichloroethene	BQL	0.00571	1	4/29/2010
trans-1.2-dichloroethene	BQL	0.00571	1	4/29/2010
1.2-Dichloropropane	BQL	0.00571	1	4/29/2010
1.3-Dichloropropane	BQL	0.00571	1	4/29/2010
2.2-Dichloropropane	BQL	0.00571	1	4/29/2010
1.1-Dichloropropene	BQL	0.00571	1	4/29/2010
cis-1.3-Dichloropropene	BQL	0.00571	1	4/29/2010
trans-1.3-Dichloropropene	BQL	0.00571	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00571	1	4/29/2010
Dijsopropyl ether (DIPE)	BOL	0.00571	1	4/29/2010
Ethvibenzene	BOL	0.00571	1	4/29/2010
Hexachlorobutadiene	BOL	0.00571	1	4/29/2010
2-Hexanone	BOL	0.0143	1	4/29/2010
lodomethane	BQL	0.00571	1	4/29/2010

Client Sample ID: SB-17 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-23A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 13:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.67 g %Solids: 77.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00571		1	4/29/2010
4-Isopropyltoluene	BQL	0.00571		· 1	4/29/2010
Methylene chloride	BQL	0.0228		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0143		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00571		1	4/29/2010
Naphthalene	BQL	0.00571		1	4/29/2010
n-Propyl benzene	BQL	0.00571		1	4/29/2010
Styrene	BQL	0.00571		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00571		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00571		1	4/29/2010
Tetrachloroethene	BQL	0.00571		1	4/29/2010
Toluene	BQL	0.00571		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00571		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00571		1	4/29/2010
Trichloroethene	BQL	0.00571		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00571		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00571		1	4/29/2010
Trichlorofluoromethane	BQL	0.00571		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00571		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00571		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00571		1	4/29/2010
Vinyl chloride	BQL	0.00571		1	4/29/2010
m-,p-Xylene	BQL	0.0114		1	4/29/2010
o-Xylene	BQL	0.00571		1	4/29/2010
		Spike	Spike	Percent	
		Addad	Regult	Recovered	

Added	Result	Recovered	
0.05	0.0639	128	
0.05	0.0471	94	
0.05	0.0438	88	
	Added 0.05 0.05 0.05	Added Result 0.05 0.0639 0.05 0.0471 0.05 0.0438	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: 0/0

Reviewed By: 20

Client Sample ID: SB-18 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-24A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 14:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.11 g %Solids: 73.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0667	1	4/29/2010
Benzene	BQL	0.00667	1	4/29/2010
Bromobenzene	BQL	0.00667	1	4/29/2010
Bromochloromethane	BQL	0.00667	1	4/29/2010
Bromodichloromethane	BQL	0.00667	1	4/29/2010
Bromoform	BQL	0.00667	1	4/29/2010
Bromomethane	BQL	0.00667	1	4/29/2010
2-Butanone	BQL	0.0333	1	4/29/2010
n-Butylbenzene	BQL	0.00667	1	4/29/2010
sec-Butylbenzene	BQL	0.00667	1	4/29/2010
tert-Butylbenzene	BQL	0.00667	1	4/29/2010
Carbon disulfide	BQL	0.00667	1	4/29/2010
Carbon tetrachloride	BQL	0.00667	1	4/29/2010
Chlorobenzene	BQL	0.00667	1	4/29/2010
Chloroethane	BQL	0.00667	1	4/29/2010
Chloroform	BQL	0.00667	1	4/29/2010
Chloromethane	BQL	0.00667	1	4/29/2010
2-Chlorotoluene	BQL	0.00667	1	4/29/2010
4-Chlorotoluene	BQL	0.00667	1	4/29/2010
Dibromochloromethane	BQL	0.00667	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0333	1	4/29/2010
Dibromomethane	BQL	0.00667	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00667	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00667	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00667	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00667	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0333	1	4/29/2010
1,1-Dichloroethane	BQL	0.00667	1	4/29/2010
1,1-Dichloroethene	BQL	0.00667	1	4/29/2010
1,2-Dichloroethane	BQL	0.00667	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00667	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00667	1	4/29/2010
1,2-Dichloropropane	BQL	0.00667	1	4/29/2010
1,3-Dichloropropane	BQL	0.00667	1	4/29/2010
2,2-Dichloropropane	BQL	0.00667	1	4/29/2010
1,1-Dichloropropene	BQL	0.00667	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00667	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00667	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00667	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00667	1	4/29/2010
Ethylbenzene	BQL	0.00667	1	4/29/2010
Hexachlorobutadiene	BQL	0.00667	1	4/29/2010
2-Hexanone	BQL	0.0167	1	4/29/2010
lodomethane	BQL	0.00667	1	4/29/2010

Client Sample ID: SB-18 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-24A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 14:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.11 g %Solids: 73.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00667		1	4/29/2010
4-Isopropyltoluene	BQL	0.00667		1	4/29/2010
Methylene chloride	BQL	0.0267		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0167		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00667		1	4/29/2010
Naphthalene	BQL	0.00667		1	4/29/2010
n-Propyl benzene	BQL	0.00667		1	4/29/2010
Styrene	BQL	0.00667		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00667		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00667		1	4/29/2010
Tetrachloroethene	BQL	0.00667		1	4/29/2010
Toluene	BQL	0.00667		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00667		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00667		1	4/29/2010
Trichloroethene	BQL	0.00667		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00667		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00667		1	4/29/2010
Trichlorofluoromethane	BQL	0.00667		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00667		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00667		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00667		1	4/29/2010
Vinyl chloride	BQL	0.00667		1	4/29/2010
m-,p-Xylene	BQL	0.0133		1	4/29/2010
o-Xylene	BQL	0.00667		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.064	128	
Toluene-d8		0.05	0.047	94	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ____0UD

4-Bromofluorobenzene

Reviewed By:

0.05

0.0431

86

Client Sample ID: SB-19 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-25A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 14:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.98 g %Solids: 70.2

Compound MG/KG Limit MG/KG Factor Analyzed Acetone BQL 0.0715 1 4/29/2010 Benzene BQL 0.00715 1 4/29/2010 Bromobenzene BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorotehane BQL 0.00715 1 4/29/2010 Chlorotehane BQL 0.00715 1 4/29/2010 Chlorotehane
Acetone BQL 0.0715 1 4/29/2010 Benzene BQL 0.00715 1 4/29/2010 Bromoblerzene BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 Sec-Butylbenzene BQL 0.00715 1 4/29/2010 carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorothane BQL 0.00715 1 4/29/2010 Chlorothane BQL 0.00715 1 4/29/2010 Chlorotoluene
Benzene BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene<
Bromobenzene BQL 0.00715 1 4/29/2010 Bromochloromethane BQL 0.00715 1 4/29/2010 Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromoform BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene
Bromochloromethane BQL 0.00715 1 4/29/2010 Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromoform BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobluene BQL 0.00715 1 4/29/2010 Chlorobluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibron
Bromodichloromethane BQL 0.00715 1 4/29/2010 Bromoform BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.0357 1 4/29/2010 2-Butanone BQL 0.0357 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobluene BQL 0.00715 1 4/29/2010 Chlorobluene BQL 0.00715 1 4/29/2010 Jz-Dibromo-3-chloropropane
Bromoform BQL 0.00715 1 4/29/2010 Bromomethane BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.0357 1 4/29/2010 n-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenene BQL 0.00715 1 4/29/2010 Chlorobuene BQL 0.00715 1 4/29/2010 Jbromo-S-chloropropane BQL 0.00715 1 4/29/2010 Jbromoethane (EDB)
Bromomethane BQL 0.00715 1 4/29/2010 2-Butanone BQL 0.0357 1 4/29/2010 n-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 1/2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1/2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010
2-Butanone BQL 0.0357 1 4/29/2010 n-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobuene BQL 0.00715 1 4/29/2010 2-Chlorobuene BQL 0.00715 1 4/29/2010 12-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 12-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 <
n-Butylbenzene BQL 0.00715 1 4/29/2010 sec-Butylbenzene BQL 0.00715 1 4/29/2010 tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobuene BQL 0.00715 1 4/29/2010 2-Chlorobuene BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 <td< td=""></td<>
sec-Butylbenzene BQL 0.00715 1 4/29/2010 tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chloroform BQL 0.00715 1 4/29/2010 Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1
tert-Butylbenzene BQL 0.00715 1 4/29/2010 Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorothane BQL 0.00715 1 4/29/2010 Chlorothane BQL 0.00715 1 4/29/2010 Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.0357 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010
Carbon disulfide BQL 0.00715 1 4/29/2010 Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane EQL 0.00715 1 4/29/2010 1,2-Dibromoethane EQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010
Carbon tetrachloride BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chlorobenzene BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 Chloroform BQL 0.00715 1 4/29/2010 Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010
Chlorobenzene BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 Chloroethane BQL 0.00715 1 4/29/2010 Chloroform BQL 0.00715 1 4/29/2010 Chloromethane BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010
Chloroethane BQL 0.00715 1 4/29/2010 Chloroform BQL 0.00715 1 4/29/2010 Chloromethane BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010
Chloroform BQL 0.00715 1 4/29/2010 Chloromethane BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 1,2-Dibromoethane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010
Chloromethane BQL 0.00715 1 4/29/2010 2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 Dibromoethane BQL 0.0357 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane EDB BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1
2-Chlorotoluene BQL 0.00715 1 4/29/2010 4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 Dibromoethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1
4-Chlorotoluene BQL 0.00715 1 4/29/2010 Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 Dibromoethane BQL 0.00715 1 4/29/2010 Dibromoethane BQL 0.00715 1 4/29/2010 Dibromoethane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethene BQL 0.00715 1 4/2
Dibromochloromethane BQL 0.00715 1 4/29/2010 1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 Dibromomethane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloro-2-butene BQL 0.0357 1 4/29/2010 1,1-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethene BQL 0.00715 1 4/29/2010 1,2-Dichloroethene BQL 0.00715
1,2-Dibromo-3-chloropropane BQL 0.0357 1 4/29/2010 Dibromomethane BQL 0.00715 1 4/29/2010 1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethene BQL 0.00715 1
DibromomethaneBQL0.0071514/29/20101,2-Dibromoethane (EDB)BQL0.0071514/29/20101,2-DichlorobenzeneBQL0.0071514/29/20101,3-DichlorobenzeneBQL0.0071514/29/20101,4-DichlorobenzeneBQL0.0071514/29/20101,4-DichlorobenzeneBQL0.0071514/29/20101,4-Dichloro-2-buteneBQL0.0071514/29/20101,1-DichloroethaneBQL0.0071514/29/20101,1-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/2010
1,2-Dibromoethane (EDB) BQL 0.00715 1 4/29/2010 1,2-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,3-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,4-Dichlorobenzene BQL 0.00715 1 4/29/2010 1,1-Dichloro-2-butene BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethene BQL 0.00715 1 4/29/2010
1,2-DichlorobenzeneBQL0.0071514/29/20101,3-DichlorobenzeneBQL0.0071514/29/20101,4-DichlorobenzeneBQL0.0071514/29/20101,4-Dichloro-2-buteneBQL0.035714/29/20101,1-DichloroethaneBQL0.0071514/29/20101,1-DichloroethaneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/2010
1,3-DichlorobenzeneBQL0.0071514/29/20101,4-DichlorobenzeneBQL0.0071514/29/2010trans-1,4-Dichloro-2-buteneBQL0.035714/29/20101,1-DichloroethaneBQL0.0071514/29/20101,1-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/2010
1,4-DichlorobenzeneBQL0.0071514/29/2010trans-1,4-Dichloro-2-buteneBQL0.035714/29/20101,1-DichloroethaneBQL0.0071514/29/20101,1-DichloroetheneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/2010
trans-1,4-Dichloro-2-buteneBQL0.035714/29/20101,1-DichloroethaneBQL0.0071514/29/20101,1-DichloroetheneBQL0.0071514/29/20101,2-DichloroethaneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/20101,2-DichloroetheneBQL0.0071514/29/2010
1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,1-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010 cis-1,2-Dichloroethane BQL 0.00715 1 4/29/2010 cis-1,2-Dichloroethane BQL 0.00715 1 4/29/2010
1,1-Dichloroethene BQL 0.00715 1 4/29/2010 1,2-Dichloroethane BQL 0.00715 1 4/29/2010 cis-1,2-Dichloroethene BQL 0.00715 1 4/29/2010
1,2-Dichloroethane BQL 0.00715 1 4/29/2010 cis-1,2-Dichloroethene BQL 0.00715 1 4/29/2010
cis-1,2-Dichloroethene BQL 0.00715 1 4/29/2010 trans 1.2 dichloroethene BQL 0.00715 1 4/29/2010
urans- i z-oichioroeinene BUL 0.00/15 1 4/29/2010
1.2-Dichloropropane BOI 0.00715 1 4/29/2010
1.3-Dichloropropane BOI 0.00715 1 4/29/2010
2.2-Dichloropropane BOI 0.00715 1 4/29/2010
1 1-Dichloropropene BQL 0.00715 1 4/29/2010
cis-1.3-Dichloropropene BOI 0.00715 1 4/29/2010
trans-1.3-Dichloropropene $BOI = 0.00715$ 1 $4/29/2010$
Dichlorodifluoromethane BOI 0.00715 1 $4/29/2010$
Diisopropyl ether (DIPE) BOI 0.00715 1 $4/29/2010$
Ethylpenzene BOI 0.00715 1 4/29/2010
Hexachlorobutadiene BOI 0.00715 1 4/29/2010
2-Hexanone BOI 0.0179 1 4/29/2010
lodomethane BQL 0.00715 1 4/29/2010

Client Sample ID: SB-19 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-25A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 14:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.98 g %Solids: 70.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00715		1	4/29/2010
4-Isopropyltoluene	BQL	0.00715		1	4/29/2010
Methylene chloride	BQL	0.0286		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0179		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00715		1	4/29/2010
Naphthalene	BQL	0.00715		1	4/29/2010
n-Propyl benzene	BQL	0.00715		1	4/29/2010
Styrene	BQL	0.00715		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00715		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00715		1	4/29/2010
Tetrachloroethene	BQL	0.00715		1	4/29/2010
Toluene	0.00905	0.00715		• 1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00715		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00715		1	4/29/2010
Trichloroethene	BQL	0.00715		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00715		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00715		1	4/29/2010
Trichlorofluoromethane	BQL	0.00715		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00715		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00715		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00715		1	4/29/2010
Vinyl chloride	BQL	0.00715		1	4/29/2010
m-,p-Xylene	BQL	0.0143		1	4/29/2010
o-Xylene	BQL	0.00715		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.0628	126	

	Auueu	Nesuit	Necow
1,2-Dichloroethane-d4	0.05	0.0628	126
Toluene-d8	0.05	0.0469	94
4-Bromofluorobenzene	0.05	0.044	88

Comments:

Flags:

BQL = Below Quantitation Limits.

OVO Analyst: ___

Reviewed By:

Client Sample ID: SB-20 (6-8) Client Project ID: NCDOT Lab Sample ID: G1037-69-26D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 69.7

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.67	50	5/4/2010
Benzene	BQL	0.0669	50	5/4/2010
Bromobenzene	BQL	0.0669	50	5/4/2010
Bromochloromethane	BQL	0.0669	50	5/4/2010
Bromodichloromethane	BQL	0.0669	50	5/4/2010
Bromoform	BQL	0.0669	50	5/4/2010
Bromomethane	BQL	0.0669	50	5/4/2010
2-Butanone	BQL	1.67	50	5/4/2010
n-Butylbenzene	BQL	0.0669	50	5/4/2010
sec-Butylbenzene	BQL	0.0669	50	5/4/2010
tert-Butylbenzene	BQL	0.0669	50	5/4/2010
Carbon disulfide	BQL	0.0669	50	5/4/2010
Carbon tetrachloride	BQL	0.0669	50	5/4/2010
Chlorobenzene	BQL	0.0669	50	5/4/2010
Chloroethane	BQL	0.0669	50	5/4/2010
Chloroform	BQL	0.0669	50	5/4/2010
Chloromethane	BQL	0.0669	50	5/4/2010
2-Chlorotoluene	BQL	0.0669	50	5/4/2010
4-Chlorotoluene	BQL	0.0669	50	5/4/2010
Dibromochloromethane	BQL	0.0669	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.334	50	5/4/2010
Dibromomethane	BQL	0.0669	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0669	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0669	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0669	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0669	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.334	50	5/4/2010
1,1-Dichloroethane	BQL	0.0669	50	5/4/2010
1,1-Dichloroethene	BQL	0.0669	50	5/4/2010
1,2-Dichloroethane	BQL	0.0669	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0669	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0669	50	5/4/2010
1,2-Dichloropropane	BQL	0.0669	50	5/4/2010
1,3-Dichloropropane	BQL	0.0669	50	5/4/2010
2,2-Dichloropropane	BQL	0.0669	50	5/4/2010
1,1-Dichloropropene	BQL	0.0669	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0669	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0669	50	5/4/2010
Dichlorodifluoromethane	BQL	0.334	50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0669	50	5/4/2010
Ethylbenzene	BQL	0.0669	50	5/4/2010
Hexachlorobutadiene	BQL	0.0669	50	5/4/2010
2-Hexanone	BQL	0.334	50	5/4/2010
lodomethane	BQL	0.0669	50	5/4/2010
lsopropylbenzene	BQL	0.0669	50	5/4/2010

Client Sample ID: SB-20 (6-8) Client Project ID: NCDOT Lab Sample ID: G1037-69-26D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 69.7

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0669		50	5/4/2010
Methylene chloride	BQL	0.334		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.334		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0669		50	5/4/2010
Naphthalene	BQL	0.0669		50	5/4/2010
n-Propyl benzene	BQL	0.0669		50	5/4/2010
Styrene	BQL	0.0669		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0669		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0669		50	5/4/2010
Tetrachloroethene	0.625	0.0669		50	5/4/2010
Toluene	BQL	0.0669		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0669		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0669		50	5/4/2010
Trichloroethene	BQL	0.0669		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0669		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0669		50	5/4/2010
Trichlorofluoromethane	BQL	0.0669		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0669		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0669		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0669		50	5/4/2010
Vinyl chloride	BQL	0.0669		50	5/4/2010
m-,p-Xylene	BQL	0.134		50	5/4/2010
o-Xylene	BQL	0.0669		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0331	110	
Toluene-d8		0.03	0.028	93	

Toluene-d8 4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: $0\sqrt{0}$

Reviewed By: _____

0.03

0.0295

98

Client Sample ID: SB-20 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-27D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.03 g %Solids: 72.4

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.43	50	5/4/2010
Benzene	BQL	0.0572	50	5/4/2010
Bromobenzene	BQL	0.0572	50	5/4/2010
Bromochloromethane	BQL	0.0572	50	5/4/2010
Bromodichloromethane	BQL	0.0572	50	5/4/2010
Bromoform	BQL	0.0572	50	5/4/2010
Bromomethane	BQL	0.0572	50	5/4/2010
2-Butanone	BQL	1.43	50	5/4/2010
n-Butylbenzene	BQL	0.0572	50	5/4/2010
sec-Butylbenzene	BQL	0.0572	50	5/4/2010
tert-Butylbenzene	BQL	0.0572	50	5/4/2010
Carbon disulfide	BQL	0.0572	50	5/4/2010
Carbon tetrachloride	BQL	0.0572	50	5/4/2010
Chlorobenzene	BQL	0.0572	50	5/4/2010
Chloroethane	BQL	0.0572	50	5/4/2010
Chloroform	BQL	0.0572	50	5/4/2010
Chloromethane	BQL	0.0572	50	5/4/2010
2-Chlorotoluene	BQL	0.0572	50	5/4/2010
4-Chlorotoluene	BQL	0.0572	50	5/4/2010
Dibromochloromethane	BQL	0.0572	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.286	50	5/4/2010
Dibromomethane	BQL	0.0572	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0572	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0572	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0572	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0572	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.286	50	5/4/2010
1,1-Dichloroethane	BQL	0.0572	50	5/4/2010
1,1-Dichloroethene	BQL	0.0572	50	5/4/2010
1,2-Dichloroethane	BQL	0.0572	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0572	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0572	50	5/4/2010
1,2-Dichloropropane	BQL	0.0572	50	5/4/2010
1,3-Dichloropropane	BQL	0.0572	50	5/4/2010
2,2-Dichloropropane	BQL	0.0572	50	5/4/2010
1,1-Dichloropropene	BQL	0.0572	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0572	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0572	50	5/4/2010
Dichlorodifluoromethane	BQL	0.286	50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0572	50	5/4/2010
Ethylbenzene	BQL	0.0572	50	5/4/2010
Hexachlorobutadiene	BQL	0.0572	50	5/4/2010
2-Hexanone	BQL	0.286	50	5/4/2010
lodomethane	BQL	0.0572	50	5/4/2010
Isopropylbenzene	BQL	0.0572	50	5/4/2010

Client Sample ID: SB-20 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-27D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.03 g %Solids: 72.4

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0572		50	5/4/2010
Methylene chloride	BQL	0.286		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.286		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0572		50	5/4/2010
Naphthalene	BQL	0.0572		50	5/4/2010
n-Propyl benzene	BQL	0.0572		50	5/4/2010
Styrene	BQL	0.0572		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0572		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0572		50	5/4/2010
Tetrachloroethene	0.692	0.0572		50	5/4/2010
Toluene	BQL	0.0572		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0572		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0572		50	5/4/2010
Trichloroethene	BQL	0.0572		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0572		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0572		50	5/4/2010
Trichlorofluoromethane	BQL	0.0572		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0572		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0572		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0572		50	5/4/2010
Vinyl chloride	BQL	0.0572		50	5/4/2010
m-,p-Xylene	BQL	0.114		50	5/4/2010
o-Xylene	BQL	0.0572		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0316	105	
Toluene-d8		0.03	0.0276	92	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _______

4-Bromofluorobenzene

Reviewed By: ______

0.03

0.0286

95

Client Sample ID: SB-21 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-28A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 16:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 71.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0653	1	4/29/2010
Benzene	BQL	0.00653	1	4/29/2010
Bromobenzene	BQL	0.00653	1	4/29/2010
Bromochloromethane	BQL	0.00653	1	4/29/2010
Bromodichloromethane	BQL	0.00653	1	4/29/2010
Bromoform	BQL	0.00653	1	4/29/2010
Bromomethane	BQL	0.00653	1	4/29/2010
2-Butanone	BQL	0.0326	1	4/29/2010
n-Butylbenzene	BQL	0.00653	1	4/29/2010
sec-Butylbenzene	BQL	0.00653	1	4/29/2010
tert-Butylbenzene	BQL	0.00653	1	4/29/2010
Carbon disulfide	BQL	0.00653	_ 1	4/29/2010
Carbon tetrachloride	BQL	0.00653	1	4/29/2010
Chlorobenzene	BQL	0.00653	1	4/29/2010
Chloroethane	BQL	0.00653	1	4/29 / 2010
Chloroform	BQL	0.00653	1	4/29/2010
Chloromethane	BQL	0.00653	1	4/29/2010
2-Chlorotoluene	BQL	0.00653	1	4/29/2010
4-Chlorotoluene	BQL	0.00653	1	4/29/2010
Dibromochloromethane	BQL	0.00653	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0326	1	4/29/2010
Dibromomethane	BQL	0.00653	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00653	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00653	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00653	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00653	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0326	1	4/29/2010
1,1-Dichloroethane	BQL	0.00653	1	4/29/2010
1,1-Dichloroethene	BQL	0.00653	1	4/29/2010
1,2-Dichloroethane	BQL	0.00653	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00653	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00653	1	4/29/2010
1,2-Dichloropropane	BQL	0.00653	1	4/29/2010
1,3-Dichloropropane	BQL	0.00653	1	4/29/2010
2,2-Dichloropropane	BQL	0.00653	1	4/29/2010
1,1-Dichloropropene	BQL	0.00653	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00653	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00653	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00653	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00653	· 1	4/29/2010
Ethylbenzene	BQL	0.00653	1	4/29/2010
Hexachlorobutadiene	BQL	0.00653	1	4/29/2010
2-Hexanone	BQL	0.0163	1	4/29/2010
lodomethane	BQL	0.00653	1	4/29/2010

Client Sample ID: SB-21 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-28A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 16:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 71.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00653		1	4/29/2010
4-Isopropyltoluene	BQL	0.00653		1	4/29/2010
Methylene chloride	BQL	0.0261		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0163		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00653		1	4/29/2010
Naphthalene	BQL	0.00653		1	4/29/2010
n-Propyl benzene	BQL	0.00653		1	4/29/2010
Styrene	BQL	0.00653		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00653		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00653		1	4/29/2010
Tetrachloroethene	BQL	0.00653		1	4/29/2010
Toluene	BQL	0.00653		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00653		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00653		1	4/29/2010
Trichloroethene	BQL	0.00653		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00653		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00653		1	4/29/2010
Trichlorofluoromethane	BQL	0.00653		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00653		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00653		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00653		1	4/29/2010
Vinyl chloride	BQL	0.00653		1	4/29/2010
m-,p-Xylene	BQL	0.0131		1	4/29/2010
o-Xylene	BQL	0.00653		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.064	128	

1,2-Dichloroethane-d4	0.05	0.064
Toluene-d8	0.05	0.0467
4-Bromofluorobenzene	0.05	0.0418

Comments:

Flags:

BQL = Below Quantitation Limits.

OVO Analyst:

Reviewed By:

93 84

Client Sample ID: SB-22 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-29A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 16:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.34 g %Solids: 73.6

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0635	1	4/29/2010
Benzene	BQL	0.00635	1	4/29/2010
Bromobenzene	BQL	0.00635	1	4/29/2010
Bromochloromethane	BQL	0.00635	1	4/29/2010
Bromodichloromethane	BQL	0.00635	1	4/29/2010
Bromoform	BQL	0.00635	1	4/29/2010
Bromomethane	BQL	0.00635	1	4/29/2010
2-Butanone	BQL	0.0317	1	4/29/2010
n-Butylbenzene	BQL	0.00635	1	4/29/2010
sec-Butylbenzene	0.0480) 0.00635	1	4/29/2010
tert-Butylbenzene	BQL	0.00635	1	4/29/2010
Carbon disulfide	BQL	0.00635	1	4/29/2010
Carbon tetrachloride	BQL	0.00635	1	4/29/2010
Chlorobenzene	BQL	0.00635	1	4/29/2010
Chloroethane	BQL	0.00635	1	4/29/2010
Chloroform	BQL	0.00635	1	4/29/2010
Chloromethane	BQL	0.00635	1	4/29/2010
2-Chlorotoluene	BQL	0.00635	1	4/29/2010
4-Chlorotoluene	BQL	0.00635	1	4/29/2010
Dibromochloromethane	BQL	0.00635	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0317	1	4/29/2010
Dibromomethane	BQL	0.00635	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00635	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00635	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00635	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00635	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0317	1	4/29/2010
1,1-Dichloroethane	BQL	0.00635	1	4/29/2010
1,1-Dichloroethene	BQL	0.00635	1	4/29/2010
1,2-Dichloroethane	BQL	0.00635	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00635	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00635	1	4/29/2010
1,2-Dichloropropane	BQL	0.00635	1	4/29/2010
1,3-Dichloropropane	BQL	0.00635	1	4/29/2010
2,2-Dichloropropane	BQL	0.00635	1	4/29/2010
1,1-Dichloropropene	BQL	0.00635	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00635	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00635	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00635	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00635	1	4/29/2010
Ethylbenzene	BQL	0.00635	1	4/29/2010
Hexachlorobutadiene	BQL	0.00635	1	4/29/2010
2-Hexanone	BQL	0.0159	1	4/29/2010
lodomethane	BQL	0.00635	1	4/29/2010

Client Sample ID: SB-22 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-29A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 16:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.34 g %Solids: 73.6

Result	Quantitation		Dilution	Date
MG/KG	Limit MG/KG		Factor	Analyzed
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.0254		1	4/29/2010
BQL	0.0159		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.00635		1	4/29/2010
BQL	0.0127		1	4/29/2010
BQL	0.00635		1	4/29/2010
	Spike	Spike	Percent	
	Result MG/KG BQL BQL BQL BQL BQL BQL BQL BQL BQL BQL	Result Quantitation MG/KG Limit MG/KG BQL 0.00635 BQL 0.00635 BQL 0.0254 BQL 0.0159 BQL 0.00635 BQL 0.00635	Result Quantitation MG/KG Limit MG/KG BQL 0.00635 BQL 0.00635 BQL 0.0254 BQL 0.0159 BQL 0.00635 BQL 0.00635	Result Quantitation Dilution MG/KG Limit MG/KG Factor BQL 0.00635 1 BQL 0.00635 1 BQL 0.0254 1 BQL 0.0159 1 BQL 0.00635 1

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0618	124
Toluene-d8	0.05	0.0499	100
4-Bromofluorobenzene	0.05	0.0481	96

Comments:

Flags:

BQL = Below Quantitation Limits.

DVG Analyst:

Reviewed By:

Client Sample ID: SB-22 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-30A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 17:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.53 g %Solids: 75.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0599	1	4/29/2010
Benzene	BQL	0.00599	1	4/29/2010
Bromobenzene	BQL	0.00599	. 1	4/29/2010
Bromochloromethane	BQL	0.00599	1	4/29/2010
Bromodichloromethane	BQL	0.00599	1	4/29/2010
Bromoform	BQL	0.00599	1	4/29/2010
Bromomethane	BQL	0.00599	1	4/29/2010
2-Butanone	BQL	0.0300	1	4/29/2010
n-Butylbenzene	BQL	0.00599	1	4/29/2010
sec-Butylbenzene	0.0285	5 0.00599	1	4/29/2010
tert-Butylbenzene	BQL	0.00599	1	4/29/2010
Carbon disulfide	BQL	0.00599	1	4/29/2010
Carbon tetrachloride	BQL	0.00599	1	4/29/2010
Chiorobenzene	BQL	0.00599	1	4/29/2010
Chloroethane	BQL	0.00599	1	4/29/2010
Chloroform	BQL	0.00599	1	4/29/2010
Chloromethane	BQL	0.00599	1	4/29/2010
2-Chlorotoluene	BQL	0.00599	1	4/29/2010
4-Chlorotoluene	BQL	0.00599	1	4/29/2010
Dibromochloromethane	BQL	0.00599	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0300	1	4/29/2010
Dibromomethane	BQL	0.00599	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00599	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00599	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00599	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00599	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0300	1	4/29/2010
1,1-Dichloroethane	BQL	0.00599	1	4/29/2010
1,1-Dichloroethene	BQL	0.00599	1	4/29/2010
1.2-Dichloroethane	BQL	0.00599	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00599	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00599	1	4/29/2010
1,2-Dichloropropane	BQL	0.00599	1	4/29/2010
1.3-Dichloropropane	BQL	0.00599	1	4/29/2010
2.2-Dichloropropane	BQL	0.00599	1	4/29/2010
1,1-Dichloropropene	BQL	0.00599	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00599	1	4/29/2010
trans-1.3-Dichloropropene	BQL	0.00599	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00599	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00599	1	4/29/2010
Ethvlbenzene	BQL	0.00599	1	4/29/2010
Hexachlorobutadiene	BQL	0.00599	1	4/29/2010
2-Hexanone	BOI	0.0150	1	4/29/2010
lodomethane	BQL	0.00599	1	4/29/2010
		-	•	

Client Sample ID: SB-22 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-30A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 17:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.53 g %Solids: 75.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	0.00745	0.00599		. 1	4/29/2010
4-Isopropyltoluene	BQL	0.00599		1	4/29/2010
Methylene chloride	BQL	0.0240		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0150		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00599		1	4/29/2010
Naphthalene	0.0234	0.00599		1	4/29/2010
n-Propyl benzene	BQL	0.00599		1	4/29/2010
Styrene	BQL	0.00599		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00599		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00599		1	4/29/2010
Tetrachloroethene	BQL	0.00599		1	4/29/2010
Toluene	BQL	0.00599		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00599		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00599		1	4/ 29/2010
Trichloroethene	0.00950	0.00599		1	4 /29 / 2010
1,1,1-Trichloroethane	BQL	0.00599		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00599		1	4/29/2010
Trichlorofluoromethane	BQL	0.00599		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00599		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00599		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00599		1	4/29/2010
Vinyl chloride	BQL	0.00599		1	4/29/2010
m-,p-Xylene	BQL	0.0120		1	4/29/2010
o-Xylene	BQL	0.00599		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1.2 Dichlereethene d4		0.05	0.0700	4.40	

Added	Result	Recover
0.05	0.0702	140
0.05	0.0482	96
0.05	0.0441	88
	0.05 0.05 0.05	0.05 0.0702 0.05 0.0482 0.05 0.0441

Comments:

Flags:

BQL = Below Quantitation Limits.

PVO Analyst:

Reviewed By:

SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

Ē	ľ													ſ
لــــ(FLON					アンシン		N27_CQ				<u>ر،</u> 2	
_	CONTACT:	M. Dail	PHONE N	ö			F	וֿכ	19-170			End		
	PROJECT:	NCDOT	SITE/PW\$	SID# :			# (SAMPLE C	sed		+			
1	REPORTS TO:		EMAIL:				υc		equired	/		_	/	
	יא <u>ס</u> . גז	_	Micheel.	dn.)@aeco	رمی رو ا)z+	GRAB	3) _ / /	/	/			
	INVOICE TO:		QUOTE #				< −	MI=		<u> </u>	<u> </u>	/	_	
-@			P.O. #:				zш	Multí hcremental			_	/	_	
)	LAB NO.	SAMPLE IDENTIF	ICATION	DATE	TIME	MATRIX/ MATRIX CODE	ц	Samples	/ / ~	/			REMARKS/ LOC ID	S
		153-118-10	(0//1/h	ဝိ [ု] စ	Ś	Ð	9	X					55
		SB-2(10-1	(2)	-	0915	S	5	ر د	\mid					Nor
		58-3 (6-8.			0930	S	5	ر ک	X					th 7
		53-4 (4-6)		_	094 <i>5</i>	\$	S	Ċ	X					۸me
		5B-4 (12-1	8-) 12-14		1000	Ś	5	6	 X					erica
		5B-4 (20-2	ر ما ر		1015	S	5	Õ	X					a, Ir
		53-5614-	الم		0501	S	s	ં	X				R5-10	IC.
		5B-6 (12-	() (000 m	15 5	5	Ś	X					
		5B-7 (8-1C	C C		'ii30 //	s os	5	6	X					
		53-7 614-11	()	>	1115	S	5	ھ]	 X				NO SOM	2
)	Collected/Reli	inquished By:(1)	Date	Time	Received B	, X :)	00D Project? YES	ON	Special Deliver	rable Require	ements:	
	M	/	01/22/4	0400	Zar	S	ľ		Cooler ID					
	Relinquished	By: (2)	Date (///	Time	Received E	X		_	Requested Turnaround	Time and or Speci	al Instructions			
Page	1/ and 1		0//62/1	1010	Bacelinoth			,						
63 (nalianhilian	D(c) · Ka	nale) - Allill	Leceived	·~								
of 65									Samples Received Colc	i (YES) NO	Cha	in of Custody	Seal: (Circle)	
	Relinquished	By: (4)	Date	Time	Received F	or Laborato	y By:	1	Cool emperature C: S	er TB <u>کرک</u> ر ح		ACT BROM	(EN ABSEN)	
														1

White - Retained by Lab Pink - Retained by Client

http://www.sgs.com/terms and conditions.htm

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

	_
\mathbf{C}	
C	

SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

Fro.M					SGS Re	ference #				5	2
		ċ							bage	<i>.</i> /	
		ö					eservatives				
	SITE/PWS	SID# :			#	SAMPLE U	pes				
	EMAIL: Mich	xe . de. 10	מכניה. כני	<	UOZH	C COMP GRAB GRAB				<u> </u>	
	QUOTE #.				< -	= N	/ / / / 0/_			_	
	P.O. #:				<u>-</u> СШ	Multi cremental	/ / / 0, /	<u> </u>	<u> </u>		
LE IDENTIFIC	ATION	DATE	TIME	MATRIX/ MATRIX CODE	<u>۳</u> ۵	Samples	(/ / S)	<u> </u>	/	<u> </u>	REMARKS/ LOC ID
((B - / B)		01/61/h	ú 3 ô	S	5	0	X				
(14-16	Ć,	9//61/h	١١٢٢	5	5	ر ک					
(18-20	رہ د	01/61/h	1200	S	5	6					5-11
(12 - 14		4/161/10	1215	S	2	2	X				
0/-8) c		alleilte	1230	S	5 2	· · · · · · · · · · · · · · · · · · ·	X				
,1-21)	H	01/61/h1	1330	S	s	6	V				
1-1-6	(4/20/10	0 001	Ś	5	5	X				
3 (14 -16	(,	0 101	Ś	5	9					
21-01)	(0011	Ś	2	9	X			Å,	21-0
(16-18	\langle	\uparrow	1110	S	5	ر م	X				
(1)	Date	Time	Received B	Ķ		₹) <u> </u>	000 Project? YES NO	Spe	cial Deliverable	Requirement	s:
	4/22/H	042	Mat	À		Ĩ	Cooler ID				
	Date V	Time	Received B				Requested Turnaround Time ar	nd-or Special Ir	nstructions:		
2	olkelia	0101	Jul	ľ		١					
V	Date	Time C	Received B	la.							
\$							3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	≣) NO	Chain of (Custody Seal	: (Circle)
	Date	Time	Received F	or Laborator	ry By:	-	cooler emperature°C:	TB 3'C	INTACT	BROKEN(ABSENT
9, AK 99518 Tel: (1, NC 28405 Tel:	907) 562-2343 (910) 350-1903	Fax: (907) 561 Fax: (910) 35	1-5301 0-1557			http://	www.sgs.com/terms and conditions	.htm			White - Retained by Pink - Retained by C

SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

CLIEN	∃ ₽	1 North					SGS Re	eference #	#		6	لا	
CONT	ACT:		PHONE N	ö			ŀ			bag			
PROJE	ECT.	- 1 a.	SITE/PWS	SID# :			*	P SAMPLE U	reservatives				
		VCDOI					ŧ (TYPE A	nalvsis / / / / /		╀		
REPO	RTS TO:		EMAIL: My : Lalue	·1. 1. 10.	מכלה יציא	5	JOZH	Comp GRAB GRAB					
INVOIC	CE TO:		QUOTE #	±			- ►		7 6/ / / /		<u> </u>	_	
-0			P.O. #:			• •	<u>ة</u> ح س	mi≓ Multi cremental		/ /	<u> </u>		
LAB N	ö	SAMPLE IDENTIFIC	ATION	DATE	TIME	MATRIX/ MATRIX CODE	<u></u>	samples	(% / / / %	/ /	<u> </u>	REMARKS/ LOC ID	S
		58-15 (12-1	(<i>I</i>)	4/20/10	1130	S	ۍ	0					35
		53-16 (4-2			0221	S	ĥ	é,					NO
		58-17 (20-	22)		0 <i>20</i> 0	S	5	د ب					th A
		58-18 (&-16			1400	S	ى ك	Q.	7		-		lme
		5B-19 (20-2	(2)		1430	S	5	Ċ					rica
_		53-20 (6-2	(۴		1500	S	5	6 -	+		,	RS-13	a, Ir
		-21) 02-88	(+)		1530	Ş	5	6					IC.
		58-21 (14-1	16)		0011	S	5	6 -					
		53-22 (6-	- 8)		0891	S	2	Ś					
-G		5B-:22 (10-	-12)	2	1760	S	ۍ ۲	ر ک	X		N	Osambl	
Collec	cted/Relin	iquished By:(1)	Date	Time	Received	(مد)-	DOD Project? YES NO	Special Deliverabl	e Requirer	nents:	
#	K		al/ss/h	odos	# //a	An	ζ		Cooler ID				
Reling	quished B	ly: (2)	Date	Time	Received B		A		Requested Turnaround Time and-or Spec	al Instructions:			
8)/	2	\mathcal{X}	alez/2	0/0/	free								-
Relind	quished B	iy: (3)' 🗸	Date	Time	Received B	y: 0							
of 65	A							,	Samples Received Cold? KES NO	Chain o	f Custody	Seal: (Circle)	
Reling	quished B	y: (4)	Date	Time	Received F	or Laborator	y By:		Cooler TB Temperature °C: <u>حک حک ع</u> یر		BROK	EN	
a 200 W. F 550 Busi	^o otter Drive iness Drive	 Anchorage, AK 99518 Tel: Wilmington, NC 28405 Tel: 	(907) 562-2343 (910) 350-1903	Fax: (907) 561 8 Fax: (910) 350	-5301)-1557			http://	/www.sgs.com/terms.and.conditions.htm			White - Retained Pink - Retained by	by Lab Client

Matt Brennan AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-70

Client Project: NCDOT-Pittsboro

Dear Matt Brennan,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

Mar 7.2010 Date Project Manager Barbara Hager

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

May 11, 2010

Barbara A. Hager SGS North America, Inc. 5500 Business Dr. Willmington NC 28405

TEL: (910) 350-1903 FAX:

RE: G1037-70

Dear Barbara A. Hager:

Order No: 1005450

Analytical Environmental Services, Inc. received 21 samples on 5/6/2010 10:40:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water,

soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/09-06/30/10.

-North Carolina Certification number 562 for analysis of Surface Water, Groundwater, Effluent, effective until 12/31/10.

-South Carolina Environmental Laboratory Certification number 98016002 effective until 12/31/10.

South Carolina Environmental Laboratory Certification number 98016003 effective until 6/30/10.

These results relate only to the items tested. This report may only be reproduced in full and with

Sometane

James Forrest Project Manager

SGS		CHAI SGS I	N OF CUS Environme	TOD' ntal S	Y REC ervices	ORD Inc.	100 5 450	Locations Nationwide Alaska Maryland New Jereev
Page				~	+ dring	⊅: (JES CHANTA	North Carolina www.us.sgs.com
ACLIENT: SGS Wilmington	Ē			SGS Ref	erence #:			naor l of 3
CONTACT: Barbara Hage	ST PHONE NO	. 910.350.1	903			G103	17-70	
PROJECT: G1037-70	SITE/PWSII	D#:			Preserv. Used			
REPORTS TO: barbara.h	lager@sgs.co	E		a υς	SAMPLE TYPE	-		
INVOICE TO:	QUOTE #:	02-22015-08		Z H <	COMP			
LAB NO. SAMPLE IDENTIFI	CATION DAT	E TIME	MATRIX	× س × ۵	G = GRAB	8260		REMARKS
G1037-70-1	4/26/2(010 1350	water	e S	grab	E E		
G1037-70-2	4/26/2(010 1330	water	3.	grab	Ŧ		
G1037-70-3	4/26/2(010 1435	water	3	grab	Ð		
G1037-70-4	4/26/2(010 1550	water	e	grab	Ŧ		
G1037-70-5	4/26/20	010 1445	water	e	grab	Ŧ		
G1037-70-6	4/26/20	010 1635	water	3	grab	æ		
G1037-70-7	4/26/2	010 1710	water	3	grab	₩		
G1037-70-8	4/27/20	010 0	water	3	grab	₩		
G1037-70-9	4/27/20	010 1120	water	3	grab	Ŧ		
G1037-70-1(0 4/27/2	010 1230	water	3	grab	₩		
Collected/Relinquished By: (1)	Date	Time	Received By:				Shipping Carrier:	Samples Received Cold? YES NO
							Shipping Ticket No:	Temperature °C:
Relinquished By: 2)	Date 5/5/1	5 14.18	Received By:	21	5/6	110	Special Deliverable Requirements:	Chain of Custody Seal: (Circle) INTACT BROKEN ABSENT
Relinquished By: (3)	Date	Time	Received By:			10:40	Requested Turnaround Time and o	· Special Instructions:
Relinquished By: (4)	Date	Time	Received For La	boratory B	×	L.	Summany Kut	int + Excl EDD ime, *
L 200 W. Potter Drive Anchorage, A C 3180 Peger Road Fairbanks, AK 9 C 5500 Business Drive Wilmington,	I (K 99 518 Tel: (907) 99701 Tel: (907) 474 NC 28405 Tel: (910)	562-2343 Fax: (90 -8656 Fax: (907) -350-1903 Fax: (9)7) 561-5301 474-9685 110) 350-1557					

SGS North America, Inc.

Page 3 of 60

SSS		CHAIN SGS En	OF CUS' vironmei	ron' ital S	Y REC ervice	ORD s Inc.	1005450	Locations Nationwide Alaska Maryland New Jersey North Carolina <u>www us.sgs.com</u>
eLIENT: SGS Wilmington				SGS Ref	erence #:			nage 2 of 3
CONTACT: Barbara Hager PH	ONE NO: 91	0.350.190	3			G103	7-70	
PROJECT: G1037-70 SIT	'E/PWSID#:				Preserv. Used	A		
REPORTS TO: barbara.hager@	sgs.com			⊯ ∪ (SAMPLE TYPE			
MVOICE TO:	OTF #·			oz⊢•	C = COMP			
P.C	. NUMBER:	G1037-70		< z	"			
LAB NO. SAMPLE IDENTIFICATION	I DATE	TIME	MATRIX	ല ജ ഗ പ	GRAB	0928		REMARKS
G1037-70-11	4/27/2010	1605	water	3	grab	₩		
G1037-70-12	4/27/2010	1550	water	3	grab	¥		
G1037-70-13	4/27/2010	1458	water	З	grab	₽		
G1037-70-14	4/27/2010	1515	water	3	grab	₽		
G1037-70-15	4/27/2010	1235	water	3	grab	₽		
G1037-70-16	4/27/2010	1055	water	3	grab	₽		
G1037-70-17	4/27/2010	1155	water	3	grab	₽		
G1037-70-18	4/27/2010	1050	water	3	grab	₽		
G1037-70-19	4/27/2010	955	water	3	grab	Ŧ		
G1037-70-20	4/27/2010	1000	water	3	grab	Æ		
Collected/Relinquished By: (1)	Date	Time	Received By:				Shipping Carrier:	Samples Received Cold? YES NO
							Shipping Ticket No:	Temperature °C:
Relinquished By: (2)	Date 5/5/10	lid. 18	Received By:				Special Deliverable Requirement	s: Chain of Custody Seal: (Circle) INTACT BROKEN ABSENT
Relinquished By: (3)	Date 5/6/10	Time 10:40	Received By:	1	1		Requested Turnaround Time and	-or Special Instructions:
Relinquished By: (4)	Date	Time	Received For Lat	oratory B				
C 200 W. Potter Drive Anchorage, AK 99518 C 3180 Peger Road Fairbanks, AK 99701 Tel: C 5500 Business Drive Wilmington, NC 28405	Tel: (907) 562-2 (907) 474-8656 Tel: (910) 350-	343 Fax: (907) Fax: (907) 474 1903 Fax: (910)	561-5301 -9685 -350-1557	ļ				

Page 4 of 60

SGS North America, Inc.

Analytical Environmental Services, Inc

Date: 13-May-10

Client:SGS North America, Inc.Project:G1037-70Lab ID:1005450

Case Narrative

Sample Receiving Nonconformance:

One vial was received broken for each of samples 1005450-004A and -016A. The laboratory proceeded with analysis using the remaining vials for each samples.

Volatile Organic Compounds Analysis by Method 8260B:

Percent recoveries for the internal standard compounds Pentafluorobenzene and 1,4-Dichlorobenzene-d4 on samples 1005450-004A, -005A, -006A, -007A, -008A, -010A, -011A, -012A, -013A, -014A, -015A, -016A, -017A, -018A, -019A, and -020A were outside control limits biased low due to suspected matrix interference.

Percent recovery for the internal standard compound Pentafluorobenzene on sample 1005450-002A was outside control limits biased low due to suspected matrix interference.

Analytical Environmental Services, Inc	48	Mu	2-ر			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-001				Client S Collecti Matrix:	ample I on Date:	D: G10 : 4/26 Aqu	37-7(/201(eous)-1) 1:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
1 1 1.2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1 1 1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1 1 2 2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1 1 2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1 1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1-Dichloropenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,3-Trichloropropage	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,4-Thinking Recizence	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.2 Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.2-Dichlorohenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.2-Dichloropropage	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.3 Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.3-Dichloropropage	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
2 2-Dichlorontonane	BRL		0,38	5.0	ug/L	129176	1	05/09/2010 14:37	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 14:37	JT
2 Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 14:37	JT
2 Hevenone	BRL		0.61	10	ug/L	129176	1	05/09/2010 14:37	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 14:37	JT
4 Isopropyltaluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 14:37	JT
4-Nethyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 14:37	JT
A cotone	BRL		5.0	50	ug/L	129176	1	05/09/2010 14:37	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 14:37	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Chiorotonia									

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

SGS North America, Inc.

Analytical Environmental Services, In	_د ۱	18 N	1ω -	a		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-001				Client S Collecti Matrix:	Sample II ion Date: :	D: G10 4/26 Aqu	37-7(/201(eous)-1) 1:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030	B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 14:37	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 14:37	JT
cis-1.3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 14:37	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 14:37	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 14:37	JT
Isopropylenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 14:37	JT
m n-Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 14:37	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 14:37	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 14:37	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 14:37	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 14:37	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1.2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1.4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	ł	05/09/2010 14:37	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 14:37	JT
Surr: 4-Bromofluorobenzene	78.6		0	60.1-127	%REC	129176	1	05/09/2010 14:37	JT
Surr: Dibromofluoromethane	100		0	79.6-126	%REC	129176	1	05/09/2010 14:37	JT
Surr: Toluene-d8	86.4		0	78-116	%REC	129176	1	05/09/2010 14:37	JT

Qualifiers:
• Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Inc	48	Du)-1			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-002				Client S Collecti Matrix:	D: G10 : 4/26 Aqu	G1037-70-2 4/26/2010 1:30:00 PM Aqueous			
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS S	W8260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:06	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 15:06	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 15:06	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 15:06	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 15:06	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 15:06	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:06	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 15:06	JT
Acetone	21	J	5.0	50	ug/L	129176	1	05/09/2010 15:06	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	t	05/09/2010 15:06	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 15:06	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 15:06	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

SGS North America, Inc.

Analytical Environmental Services, In	ic 4	8 DI	N-1			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-002					Client Sample ID: Collection Date: Matrix:			0-2 0 1:30:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:06	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 15:06	JT
cis-1.3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:06	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 15:06	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 15:06	JT
Isopropylenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:06	ΤL
m n-Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 15:06	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	ΤL
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:06	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:06	JT
n-Pronylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:06	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 15:06	JT
tert-Butvlhenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1 2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1 3-Dichloropropene	BRL		0.58	5,0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1 4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 15:06	Τl
Trichloroethene	BRL		0.23	. 5.0	ug/L	129176	1	05/09/2010 15:06	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Vinvl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 15:06	JT
Surr: 4-Bromofluorobenzene	78.3		0	60.1-127	%REC	129176	1	05/09/2010 15:06	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 15:06	JT
Surr: Toluene-d8	86.3		0	78-116	%REC	129176	1	05/09/2010 15:06	JT

Qualifiers:

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

٠

SGS North America, Inc.

Client: SGS North America, Inc. Project Name: G1037-70 Lab ID: 1005450-003					Client Sample ID: Collection Date: Matrix:			0-3 0 2:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,1-Trichloroethane	2.0	J	0.094	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1-Dichloroethane	6.5		0.29	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.1-Dichloroethene	7.1		0.30	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.2.3-Trichloropropane	BRL		0,32	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1 2 4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1 2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15.34	Л
1 2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 15.34	IT
1.2-Dichloropropage	BRL		0.48	50	ug/L	129176	1	05/09/2010 15:34	Л
1.3.5-Trimethylbenzene	BRI.		0.18	5.0	ue/L	129176	1	05/09/2010 15:34	IT
1 3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:34	IT
1.3-Dichloroptopape	BRI.		0.32	5.0	ue/L	129176	1	05/09/2010 15:34	т
1 4-Dichlorobenzene	BRL.		0.32	5.0	ue/L	129176	1	05/09/2010 15:34	IT
2 2-Dichloropropage	BRL		0.38	5.0	ue/L	129176	1	05/09/2010 15:34	л
2-Butanone	BRL		17	50	ug/L	129176	1	05/09/2010 15:34	л
2-Chlorotoluene	BRL		0.27	50	ue/L	129176	1	05/09/2010 15:34	л
2-Hevanone	BRL		0.61	10	ue/L	129176	1	05/09/2010 15:34	IT
4-Chlorotoluene	BRL		0.27	50	ug/L	129176	1	05/09/2010 15:34	IT
4-Isonronyltoluene	BRL		0.20	5.0	ug/L	129176	1	05/09/2010 15:34	IT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 15:34	IT
A cetone	BRL		5.0	50	ue/L	129176	1	05/09/2010 15:34	IT
Benzene	BRL		0.21	50	ue/L	129176	1	05/09/2010 15:34	IT
Bromobenzene	BRL		0.21	5.0	ue/L	129176	1	05/09/2010 15:34	Л
Bromochloromethane	BRL		0.66	5.0	ue/L	129176	1	05/09/2010 15:34	Т
Bromodichloromethane	BRI		0.22	5.0	- <i>9</i> – ug/L	129176	1	05/09/2010 15:34	п
Bromoform	BRI		0.70	5.0	ug/L	129176	1	05/09/2010 15:34	IT
Bromomethane	RRI		0.49	5.0	ug/L	129176	•	05/09/2010 15:34	IT
Carbon disulfide	RRI		0.41	5.0	- <i>5</i> -2 ug/L	129176	1	05/09/2010 15:34	IT
Carbon tetrachloride	BRI		0.25	5.0	ug/L	129176	1	05/09/2010 15:34	JT.
Chlorobenzene	RRI		0.11	5.0	-22 ug/I.	129176	•	05/09/2010 15:34	л IT
Chloroethane	RRI		0.39	10	ug/I	129176	1	05/09/2010 15:34	л. IT
Chloroform	נסמ		0.20	50	<u></u>	120176	1	05/09/2010 15:34	л. 1Т

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Analytical Environmental Services, In	c L	18 n	nW -	3 Client S	Sample I	Da D: G10	te: 37-7(11-May-10	
Project Name: G1037-70 Lab ID: 1005450-003				Collect Matrix	4/26 Aqu	/201(eous) 2:35:00 PM		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analysi
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:34	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 15:34	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:34	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 15:34	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 15:34	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:34	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 15:34	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:34	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:34	TL
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:34	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 15:34	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Tetrachloroethene	5.0		0.51	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	I	05/09/2010 15:34	JT
Trichloroethene	3.5	J	0.23	5.0	ug/L	129176	1	05/09/2010 15:34	Τl
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 15:34	JT
Surr: 4-Bromofluorobenzene	75.8		0	60.1-127	%REC	129176	1	05/09/2010 15:34	ΤL
Surr: Dibromofluoromethane	103		0	79.6-126	%REC	129176	1	05/09/2010 15:34	JT
Surr: Toluene-d8	87.4		0	78-116	%REC	129176	1	05/09/2010 15:34	JT

Qualifiers: * V	Value exceeds maximum	contaminant level
-----------------	-----------------------	-------------------

BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value
| Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-004 | | | | Client S
Collecti
Matrix: | ample I
on Date | D: G10
4/26
Aqu | 37-7(
/201(
eous | 0-4
0 3:50:00 PM | |
|---|---------|------|-------|---------------------------------|--------------------|-----------------------|------------------------|---------------------|--------|
| Analyses | Result | Qual | MDL | Reporting
Limit | Units | BatchID | DF | Date Analyzed | Analys |
| Volatile Organic Compounds by GC/MS | SW8260B | | | (5 | SW503(|)B) | | | |
| 1,1,1,2-Tetrachloroethane | BRL | | 0.37 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1,1-Trichloroethane | BRL | | 0.094 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1,2,2-Tetrachloroethane | BRL | | 0.51 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1,2-Trichloroethane | BRL | | 0.33 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1-Dichloroethane | BRL | | 0.29 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1-Dichloroethene | BRL | | 0.30 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,1-Dichloropropene | BRL | | 0.49 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,2,3-Trichlorobenzene | BRL | | 0.43 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2.3-Trichloropropane | BRL | | 0.32 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2.4-Trichlorobenzene | BRL | | 0.46 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2.4-Trimethylbenzene | BRL | | 0.34 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2-Dibromo-3-chloropropane | BRL | | 0.31 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2-Dibromoethane | BRL | | 0.29 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2-Dichlorobenzene | BRL | | 0.36 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2-Dichloroethane | BRL | | 0.16 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.2-Dichloropropane | BRL | | 0.48 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1.3.5-Trimethylbenzene | BRL | | 0.18 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | Л |
| 1,3-Dichlorobenzene | BRL | | 0.24 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,3-Dichloropropane | BRL | | 0.32 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 1,4-Dichlorobenzene | BRL | | 0.32 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 2,2-Dichloropropane | BRL | | 0.38 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 2-Butanone | BRL | | 1.7 | 50 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 2-Chlorotoluene | BRL | | 0.27 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 2-Hexanone | BRL | | 0.61 | 10 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 4-Chlorotoluene | BRL | | 0.27 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 4-lsopropyltoluene | BRL | | 0.26 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| 4-Methyl-2-pentanone | BRL | | 0.39 | 10 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Acetone | BRL | | 5.0 | 50 | ug/L | 129176 | 1 | 05/09/2010 16:03 | TL |
| Benzene | BRL | | 0.21 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Bromobenzene | BRL | | 0.28 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Bromochloromethane | BRL | | 0.66 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Bromodichloromethane | BRL | | 0.22 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Bromoform | BRL | | 0.70 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Bromomethane | BRL | | 0.49 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Carbon disulfide | BRL | | 0.41 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Carbon tetrachloride | BRL | | 0.25 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Chlorobenzene | BRL | | 0.11 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Chloroethane | BRL | | 0.39 | 10 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |
| Chloroform | BRL | | 0.30 | 5.0 | ug/L | 129176 | 1 | 05/09/2010 16:03 | JT |

Qualifiers: Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	c L	18-1	mω	-4R		Da	ite:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-004				Client S Collecti Matrix:	Sample I ion Date	D: G1037-70-4 : 4/26/2010 3:50:00 PM Aqueous			
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:03	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 16:03	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:03	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 16:03	ΤL
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 16:03	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 16:03	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	I	05/09/2010 16:03	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 16:03	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:03	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:03	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:03	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 16:03	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 16:03	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 16:03	JT
Surr: 4-Bromofluorobenzene	75.8		0	60.1-127	%REC	129176	1	05/09/2010 16:03	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 16:03	JT
Surr: Toluene-d8	87.3		0	78-116	%REC	129176	I	05/09/2010 16:03	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Client Sample ID:G1037-70 Lab ID:Project Name:G1037-70 1005450-005Matrix: $4/26/20$ Matrix:AnalysesResultQualMDLReporting LimitUnitsBatchIDDVolatile Organic Compounds by GC/MSSW8260B(SW5030B)1,1,2-TetrachloroethaneBRL 0.37 5.0 ug/L 12917611,1,2-TetrachloroethaneBRL 0.51 5.0 ug/L 12917611,1,2-TrichloroethaneBRL 0.33 5.0 ug/L 12917611,1,2-TrichloroethaneBRL 0.33 5.0 ug/L 12917611,1,2-TrichloroethaneBRL 0.33 5.0 ug/L 1291761	11-May-10	
Analyses Result Qual MDL Reporting Limit Units BatchID D Volatile Organic Compounds by GC/MS SW8260B (SW5030B) 1 1.1,1,2-Tetrachloroethane BRL 0.37 5.0 ug/L 129176 1 1,1,2-Tetrachloroethane BRL 0.094 5.0 ug/L 129176 1 1,1,2,2-Tetrachloroethane BRL 0.51 5.0 ug/L 129176 1 1,1,2-Trichloroethane BRL 0.33 5.0 ug/L 129176 1 1,1,2-Trichloroethane BRL 0.33 5.0 ug/L 129176 1	-70-5 110 2:45:00 PM 18	
Volatile Organic Compounds by GC/MS SW8260B (SW5030B) 1,1,1,2-Tetrachloroethane BRL 0.37 5.0 ug/L 129176 1 1,1,1-Trichloroethane BRL 0.094 5.0 ug/L 129176 1 1,1,2,2-Tetrachloroethane BRL 0.51 5.0 ug/L 129176 1 1,1,2-Trichloroethane BRL 0.33 5.0 ug/L 129176 1 1,1,2-Trichloroethane BRL 0.33 5.0 ug/L 129176 1	F Date Analyzed	Analyst
1,1,1,2-TetrachloroethaneBRL0.375.0ug/L12917611,1,1-TrichloroethaneBRL0.0945.0ug/L12917611,1,2,2-TetrachloroethaneBRL0.515.0ug/L12917611,1,2-TrichloroethaneBRL0.335.0ug/L1291761		
1,1,1-TrichloroethaneBRL0.0945.0ug/L12917611,1,2,2-TetrachloroethaneBRL0.515.0ug/L12917611,1,2-TrichloroethaneBRL0.335.0ug/L1291761	05/09/2010 16:32	JT
1,1,2,2-TetrachloroethaneBRL0.515.0ug/L12917611,1,2-TrichloroethaneBRL0.335.0ug/L1291761	05/09/2010 16:32	JT
1,1,2-Trichloroethane BRL 0.33 5.0 ug/L 129176 1	05/09/2010 16:32	JT
	05/09/2010 16:32	JT
1,1-Dichloroethane BRL 0.29 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1,1-Dichloroethene BRL 0.30 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1,1-Dichloropropene BRL 0.49 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1.2.3-Trichlorobenzene BRL 0.43 5.0 ug/L 129176 1	05/09/2010 16:32	ΤL
1.2.3-Trichloropropane BRL 0.32 5.0 ug/L 129176 1	05/09/2010 16:32	JT
I 2 4-Trichlorobenzene BRL 0.46 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1.2.4-Trimethylbenzene BRL 0.34 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 2-Dibromo-3-chloropropane BRL 0.31 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 2-Dibromoethane BRL 0.29 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1.2-Dichlorohenzene BRL 0.36 5.0 ug/L 129176 1	05/09/2010 16:32	TL
1 2-Dichloroethane BRL 0.16 5.0 ug/L 129176 1	05/09/2010 16:32	ΤL
1 2-Dichloronronane BRL 0.48 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 3 5-Trimethylhenzene BRL 0.18 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 3-Dichlorohenzene BRL 0.24 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 3-Dichloropropane BRL 0.32 5.0 ug/L 129176 1	05/09/2010 16:32	JT
1 4-Dichlorohenzene BRL 0.32 5.0 ug/L 129176 1	05/09/2010 16:32	JT
2.2-Dichloropropane BRL 0.38 5.0 ug/L 129176 1	05/09/2010 16:32	JT
2-Butanone BRL 1.7 50 ug/L 129176 1	05/09/2010 16:32	JŢ
2-Chlorotoluene BRL 0.27 5.0 ug/L 129176 1	05/09/2010 16:32	JT
2-Hexanone BRL 0.61 10 ug/L 129176 1	05/09/2010 16:32	JT
4-Chlorotoluene BRL 0.27 5.0 ug/L 129176 1	05/09/2010 16:32	JT
4-Isopropyltoluene BRL 0.26 5.0 ug/L 129176 1	05/09/2010 16:32	JT
4-Methyl-2-pentanone BRL 0.39 10 ug/L 129176 1	05/09/2010 16:32	JT
Acetone BRL 5.0 50 ug/L 129176 1	05/09/2010 16:32	JT
Benzene BRL 0.21 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Bromobenzene BRL 0.28 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Bromochloromethane BRL 0.66 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Bromodichloromethane BRL 0.22 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Bromoform BRL 0.70 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Bromomethane BRL 0.49 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Carbon disulfide BRL 0.41 5.0 ug/L 129176 1		
Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1	05/09/2010 16:32	JT
Chlorobenzene BRL 0.11 5.0 ug/L 129176 1	05/09/2010 16:32 05/09/2010 16:32	JT JT
Chloroethane BRL 0.39 10 ug/L 129176 1	05/09/2010 16:32 05/09/2010 16:32 05/09/2010 16:32	TL JT JT
Chloroform BRL 0.30 5.0 ug/L 129176 1	05/09/2010 16:32 05/09/2010 16:32 05/09/2010 16:32 05/09/2010 16:32	TL JT JT JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	· 4	<u>í Pl</u>	こう			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-005				Client S Collecti Matrix:	ample I on Date:	D: G10 4/26 Aqu	37-70 /2010 eous)-5) 2:45:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:32	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 16:32	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 16:32	ΤL
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:32	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 16:32	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 16:32	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:32	JT
m.p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 16:32	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:32	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:32	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:32	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 16:32	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 16:32	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:32	ΤL
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 16:32	JT
Surr: 4-Bromofluorobenzene	76.5		0	60.1-127	%REC	129176	1	05/09/2010 16:32	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 16:32	JT
Surr: Toluene-d8	88.4		0	78-116	%REC	129176	1	05/09/2010 16:32	JT

Qualifiers: * Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Inc	489	5ω·	-0			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-006	·•			Client S Collecti Matrix:	ample I on Date:	D: G10 : 4/26 Aqu	37-7(/201(eous	0-6 0 4:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS S	W8260B			6	SW503() B)			
1.1.1.2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	١	05/09/2010 17:01	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.1.2.2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.1.2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	I	05/09/2010 17:01	JT
1 1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1 1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1 2 3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2.4.Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2.Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.2 Dichlorosthane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1,2-Dichloropropage	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1,2-Dicinoropropane	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1,3,5-Thindhytoenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1.3 Dichloropropage	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:01	JT
1,4 Dichlorohenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:01	JT
2.2 Dichloropropage	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 17:01	JT
2,2-Dichlorophopane	BRL		1.7	50	ug/L	129176	1	05/09/2010 17:01	JT
2 Chlorotoluono	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:01	JT
2-Unitroitidene	BRL		0.61	10	ug/L	129176	1	05/09/2010 17:01	JT
2-riexallolle	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:01	JT
4-Childronoulteluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:01	JT
4-Isopropyholiche	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:01	JT
4-Methyl-2-pentanone	BRL		5.0	50	ug/L	129176	1	05/09/2010 17:01	JT
Renzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromehanzana	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromodishlaramathana	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Bromoniculation	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Carbon tetraphlarida	RRI		0.25	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Chlorohonzono	RRI		0 11	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Chloroothopo	RRI		0.39	10	ug/L	129176	1	05/09/2010 17:01	JT
Chloroform	BRL	,	0.30	5.0	ug/L	129176	1	05/09/2010 17:01	JT

Qualifiers: • Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Ind	, Y	8-	SW	וכ		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-006				Client S Collecti Matrix:	Sample I on Date	D: G10 : 4/26 Aqu	37-7(/201(eous)-6) 4:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW503	0 B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:01	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:01	JT
cis-1.3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:01	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:01	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:01	JT
Isopropylenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:01	JT
m n-Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:01	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:01	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:01	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Nanhthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
o-Xvlene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:01	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Sturene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:01	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:01	Л
trong 1.2 Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:01	JT
trans-1,2-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:01	JT
trans 1,5-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:01	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:01	TL
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:01	JT
Surr: 4-Bromofluorobenzene	* 75.8		0	60,1-127	%REC	129176	1	05/09/2010 17:01	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 17:01	JT
Surr: Toluene-d8	90.3		0	78-116	%REC	129176	1	05/09/2010 17:01	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Inc	EB	Ø1-	042	2610		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-007				Client S Collecti Matrix:	ample I on Date:	D: G10 : 4/26 Aqu	37-7(/201(eous	0-7 0 5:10:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS S	W8260B			(!	SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	TL
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2.4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1 2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 17:29	JŢ
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
2.2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 17:29	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 17:29	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:29	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 17:29	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:29	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:29	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:29	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 17:29	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	Τſ
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:29	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:29	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	ne E	BØ	1-0-	2610		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-007				Client Collect Matrix	Sample I ion Date :	D: G10 : 4/26 Aqu	37-7(/201(eous)-7) 5:10:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:29	TL
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:29	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	i	05/09/2010 17:29	TL
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:29	TL
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:29	TL
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:29	TL
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:29	TL
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	I	05/09/2010 17:29	TL
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:29	TL
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:29	Л
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:29	л
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:29	Л
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:29	Л
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:29	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:29	TL
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:29	JT
Surr: 4-Bromofluorobenzene	76.1		0	60.1-127	%REC	129176	1	05/09/2010 17:29	Τſ
Surr: Dibromofluoromethane	105		0	79.6-126	%REC	129176	1	05/09/2010 17:29	ΤL
Surr: Toluene-d8	88.2		0	78-116	%REC	129176	1	05/09/2010 17:29	TL

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, me		• 1	'						
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-008				Client S Collecti Matrix:	ample I on Date:	D: G10 : 4/27 Aqu	37-7(/201(eous	0-8 0	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS S	W8260B			6	SW503(0 B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:58	Л
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 17:58	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 17:58	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:58	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:58	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:58	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 17:58	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:58	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:58	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	<u>c</u> y	<u>Ur</u>	-1				ie:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-008				Client S Collecti Matrix:	ample I on Date	D: G10 : 4/27 Aqu	37-70 /2010 eous)-8)	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:58	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:58	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:58	TL
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:58	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:58	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:58	JT
Isopronylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:58	Τſ
m n-Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:58	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:58	TL
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:58	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
o-Xvlene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:58	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:58	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:58	JT
trans-1.2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:58	Л
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
trans-1 4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:58	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Vinvl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:58	JT
Surr 4-Bromofluorobenzene	75.2		0	60.1-127	%REC	129176	1	05/09/2010 17:58	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 17:58	TL
Surr: Toluene-d8	88.7		0	78-116	%REC	129176	1	05/09/2010 17:58	JT

Qualifiers: Value exceeds maximum contaminant level

.

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client: SGS North America, Inc. Client Sample ID: G1037-70-9 Project Name: G1037-70 Collection Date: 4/27(2010 11:20:00 AM Analyses Result Qual MDL Reporting Limit Units Batch1D DF Date Analyzed Analyzet Volatile Organic Compounds by GC/MS SW8260B (SW5030B) Image: State	Analytical En	wironmental Services, Inc	48	DU	1-1B			Da	te:	11-May-10			
Analyses Result Qual MDL Reporting Limit Units BatchTD DF Date Analyzed Analyzed Volatile Organic Compounds by GC/MS SW8260B (SW5030B) 0509201019.52 TT 1,1,1-Trichtoroethane BRL 0.074 5.0 wpL 129176 1 0509201019.52 TT 1,1,2-Trichtoroethane BRL 0.33 5.0 wpL 129176 1 0509201019.52 TT 1,1-Drichtoroethane BRL 0.33 5.0 wpL 129176 1 0509201019.52 TT 1,1-Drichtoroethane BRL 0.43 5.0 wpL 129176 1 0509201019.52 TT 1,2,3-Trichtorobenzene BRL 0.43 5.0 wpL 129176 1 0509201019.52 TT 1,2,4-Trimethybenzene BRL 0.43 5.0 wpL 129176 1 0509201019.52 TT 1,2,4-Trimethybenzene BRL 0.34 5.0 w	Client: Project Name: Lab ID:	SGS North America, Inc. G1037-70 1005450-009		Client Sam Collection Matrix:				le ID: G1037-70-9 ate: 4/27/2010 11:20:00 AM Aqueous					
Volatile Organic Compounds by GC/MS SW8260B (SW5030B) 1,1,2-Tetrachloroethane BRL 0.37 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,1,2-Tichkloroethane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,1,2-Tichkloroethane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,1-Dichkloroethane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,1-Dichkloroethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,2.3-Trickhoropopane BRL 0.43 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,2.4-Trickhoropopane BRL 0.43 5.0 ug/L 129176 1 05/09/2010 19.52 TT 1,2.4-Trickhoropopane BRL 0.34 5.0 ug/L	Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst		
1,1,1,2-Tetrachloroethane BRL 0.37 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,1,2-Trichloroethane BRL 0.031 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,1,2-Trichloroethane BRL 0.33 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,1-Drichloroethane BRL 0.29 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,1-Drichloroethane BRL 0.49 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,2,4-Trichlorobenzene BRL 0.43 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,2,4-Trichlorobenzene BRL 0.31 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,2,4-Trichlorobenzene BRL 0.31 5.0 wp/L 129176 1 05/99/2010 19.52 TT 1,2-Drichorobenzene BRL 0.31 5.0 wp/L	Volatile Organ	ic Compounds by GC/MS S	W8260B			(SW5030	B)					
1,1,1-Trichloroethane BRL 0.094 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,1,2,2-Tritachloroethane BRL 0.31 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,1-Dichloroethane BRL 0.30 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,1-Dichloroethane BRL 0.30 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,1-Dichloropropane BRL 0.49 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,2,3-Trichlorobenzene BRL 0.43 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,2,4-Triinchtylbenzene BRL 0.34 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,2-Dichloropenane BRL 0.34 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,2-Dichloropenane BRL 0.36 5.0 ug/L 129176 1 0.50902010 19.52 TT 1,2-Dichlorope	1,1,1,2-Tetrac	chloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,1,2,2-Tertachloroethane BRL 0.51 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,1-Dichloroethane BRL 0.30 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,1-Dichloroethane BRL 0.30 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,1-Dichloroptopene BRL 0.43 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2,3-Trichloroptopane BRL 0.43 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2,4-Trinchloroptopane BRL 0.44 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2-Dibromoethane BRL 0.34 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2-Dibromoethane BRL 0.36 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 0509/2010 19.52 TT 1,2-Dichlorobenzene	1,1,1-Trichlor	roethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,1.2-Trichloroethane BRL 0.33 5.0 ugL 129176 1 0509/2010 19:52 TT 1,1-Dichloroethane BRL 0.29 5.0 ugL 129176 1 0509/2010 19:52 TT 1,1-Dichloroethene BRL 0.49 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2.3-Trichlorobenzene BRL 0.43 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2,4-Trichlorobenzene BRL 0.32 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2,4-Trichlorobenzene BRL 0.34 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.34 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.36 5.0 ugL 129176 1 0509/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.16 5.0 ugL 129176 1 0509/2010 19:52 TT 1,3-STimtehylbenzene <td< td=""><td>1.1.2.2-Tetrac</td><td>chloroethane</td><td>BRL</td><td></td><td>0.51</td><td>5.0</td><td>ug/L</td><td>129176</td><td>1</td><td>05/09/2010 19:52</td><td>JT</td></td<>	1.1.2.2-Tetrac	chloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,1-Dichloroethane BRL 0.29 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,1-Dichloroethene BRL 0.49 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2.3-Trichlorobenzene BRL 0.43 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2.3-Trichlorobenzene BRL 0.43 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2.4-Trinchrybbenzene BRL 0.34 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2-Dichlorobenzene BRL 0.34 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2-Dichlorobenzene BRL 0.31 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,2-Dichlorobenzene BRL 0.36 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,3-Dichlorophopane BRL 0.16 5.0 uy/L 129176 1 05/09/2010 19-52 TT 1,3-Dichlorophopane	1,1,2-Trichlor	roethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,1-Dichloroptopene BRL 0.30 5.0 ug/L 129176 1 05/9/2010 19:52 IT 1,2,3-Trichloroptopene BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,3-Trichloroptopane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,3-Trichloroptopane BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,4-Trinchrylbenzene BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dibromo-3-chloropropane BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.18 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-5 Trinethylbenzene BRL 0.18 5.0 <	1.1-Dichloroe	ethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,1-Dichloropropene BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2,3-Trichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2,4-Trichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2,4-Trinethylbenzene BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromo-3-chioropropane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromo-banene BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichloroptopane BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-5-Trimethylbenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-5-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,4-D	1.1-Dichloroe	thene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2,3-Trichlorobenzene BRL 0.43 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,3-Trichloropenane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,4-Trichlorobenzene BRL 0.46 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,4-Trintchtylbenzene BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dibromo-3-chloropropane BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-Dichlorobenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-Di	1.1-Dichloror	propene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2,3-Trichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2,4-Trichlorobenzene BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dibromo-3-chloropropane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dibromo-shane BRL 0.29 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-5-Trimethylbenzene BRL 0.18 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-5-Dichloropropane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,3-5-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 IT 1,2-Dic	1.2.3-Trichlor	robenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2,4-Trichlorobenzene BRL 0.46 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2,4-Trimethylbenzene BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromo-3-chloropropane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromo-thane BRL 0.29 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobenzene BRL 0.18 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichloropr	1.2.3-Trichlor	ropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 19:52	Τl		
1,2,4-Trimethylbenzene BRL 0.34 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromo-3-chloropropane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dibromoethane BRL 0.29 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-5-Trimethylbenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,4-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropropane BRL 0.33 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropo	1.2.4-Trichlor	robenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2-Dibromo-3-chloropropane BRL 0.31 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,2-Dibromo-s-chloropropane BRL 0.29 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,2-Dichloropropane BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-5-Trimethylbenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichlorobenzene BRL 0.24 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2,2-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2,-Hexa	1 2 4-Trimeth	vlhenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2-Dichoroothane BRL 0.29 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,2-Dichloroothane BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,2-Dichloroothane BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichloroothane BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichlorobenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,3-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 JT 1,4-Dichloropropane BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2-Dichloropropane BRL 0.38 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2-Dichloropropane BRL 0.77 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2-Hexanone BRL	1.2-Dibromo-	-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2-Dichlorobenzene BRL 0.36 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichlorobenzene BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-5-Trimethylbenzene BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichloropropane BRL 0.24 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,4-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropropane BRL 0.38 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropropane BRL 0.37 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropropane BRL 0.61 10 ug/L 129176 1 05/09/2010 19:52 TT 2,-Chlorotoluene	1.2-Dibromoe	ethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2-Dichloroethane BRL 0.16 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,2-Dichloroethane BRL 0.48 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-5-Trimethylbenzene BRL 0.18 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,3-Dichlorobenzene BRL 0.24 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,4-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 1,4-Dichlorobenzene BRL 0.32 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,2-Dichloropropane BRL 0.38 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,-Dichloropropane BRL 0.77 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,-Dichloropropane BRL 0.27 5.0 ug/L 129176 1 05/09/2010 19:52 TT 2,-Dichloropropane	1,2 Dichloroh	penzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,2-DichloropropaneBRL0.485.0ug/L129176105/09/201019:52TT1,3,5-TrimethylbenzeneBRL0.185.0ug/L129176105/09/201019:52TT1,3-DichlorobenzeneBRL0.245.0ug/L129176105/09/201019:52TT1,3-DichlorobenzeneBRL0.325.0ug/L129176105/09/201019:52TT1,4-DichlorobenzeneBRL0.325.0ug/L129176105/09/201019:52TT2-DichloropropaneBRL0.385.0ug/L129176105/09/201019:52TT2-DichloropropaneBRL0.775.0ug/L129176105/09/201019:52TT2-ChlorotolueneBRL0.6110ug/L129176105/09/201019:52TT4-ChlorotolueneBRL0.6110ug/L129176105/09/201019:52TT4-StopropyltolueneBRL0.275.0ug/L129176105/09/201019:52TT4-StopropyltolueneBRL0.265.0ug/L129176105/09/201019:52TT4-StopropyltolueneBRL0.215.0ug/L129176105/09/201019:52TTBromoberzeneBRL0.225.0ug/L129176105/09/201019:52TTBromoberzeneBR	1 2-Dichloroe	thane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,3,5-TrimethylbenzeneBRL0.185.0ug/L129176105/09/2010 19:52JT1,3-DichlorobenzeneBRL0.325.0ug/L129176105/09/2010 19:52JT1,3-DichloropropaneBRL0.325.0ug/L129176105/09/2010 19:52JT1,4-DichlorobenzeneBRL0.325.0ug/L129176105/09/2010 19:52JT2,2-DichloropropaneBRL0.385.0ug/L129176105/09/2010 19:52JT2-ButanoneBRL0.275.0ug/L129176105/09/2010 19:52JT2-ChlorotolueneBRL0.6110ug/L129176105/09/2010 19:52JT4-ChlorotolueneBRL0.265.0ug/L129176105/09/2010 19:52JT4-StopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JT4-StopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JTAcetoneBRL0.3910ug/L129176105/09/2010 19:52JTBenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.285.0ug/L129176105/09/2010 19:52JTBromodichloromethaneBRL0.285.0ug/L129176105/09/2010 19:52JT	1 2-Dichloror	ronane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 19:52	Τl		
1,3-DicklorobenzeneBRL0.245.0ug/L129176105/09/2010 19:52JT1,3-DicklorobenzeneBRL0.325.0ug/L129176105/09/2010 19:52JT2,2-DickloropropaneBRL0.385.0ug/L129176105/09/2010 19:52JT2,2-DickloropropaneBRL0.385.0ug/L129176105/09/2010 19:52JT2,2-DickloropropaneBRL0.775.0ug/L129176105/09/2010 19:52JT2-ChlorotolueneBRL0.275.0ug/L129176105/09/2010 19:52JT2-ChlorotolueneBRL0.275.0ug/L129176105/09/2010 19:52JT4-ChlorotolueneBRL0.275.0ug/L129176105/09/2010 19:52JT4-SopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JT4-SopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JTAcetoneBRL0.215.0ug/L129176105/09/2010 19:52JTBornobenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.285.0ug/L129176105/09/2010 19:52JTB	1.3.5-Trimeth	vlbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,3-DichloropropaneBRL0.325.0ug/L129176105/09/2010 19:52IT1,4-DichloropenzeneBRL0.325.0ug/L129176105/09/2010 19:52IT2,2-DichloropropaneBRL0.385.0ug/L129176105/09/2010 19:52IT2-ButanoneBRL1.750ug/L129176105/09/2010 19:52IT2-ChlorotolueneBRL0.275.0ug/L129176105/09/2010 19:52IT2-HexanoneBRL0.6110ug/L129176105/09/2010 19:52IT4-ChlorotolueneBRL0.275.0ug/L129176105/09/2010 19:52IT4-ChlorotolueneBRL0.265.0ug/L129176105/09/2010 19:52IT4-StopropyltolueneBRL0.3910ug/L129176105/09/2010 19:52IT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/2010 19:52ITAcetoneBRL0.215.0ug/L129176105/09/2010 19:52ITBenzeneBRL0.225.0ug/L129176105/09/2010 19:52ITBromochloromethaneBRL0.225.0ug/L129176105/09/2010 19:52ITBromodichloromethaneBRL0.705.0ug/L129176105/09/2010 19:52ITBromodichlorometh	1 3-Dichloroh	penzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
1,4-DichlorobenzeneBRL0.325.0ug/L129176105/09/201019:52JT2,2-DichloropropaneBRL0.385.0ug/L129176105/09/201019:52JT2-ButanoneBRL1.750ug/L129176105/09/201019:52JT2-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT2-HexanoneBRL0.6110ug/L129176105/09/201019:52JT4-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT4-ChlorotolueneBRL0.265.0ug/L129176105/09/201019:52JT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/201019:52JTAcctoneBRL0.215.0ug/L129176105/09/201019:52JTBenzeneBRL0.285.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.285.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.225.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.225.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.495.0 <t< td=""><td>1.3-Dichloror</td><td>propane</td><td>BRL</td><td></td><td>0.32</td><td>5.0</td><td>ug/L</td><td>129176</td><td>I</td><td>05/09/2010 19:52</td><td>Τl</td></t<>	1.3-Dichloror	propane	BRL		0.32	5.0	ug/L	129176	I	05/09/2010 19:52	Τl		
2,2-DichloropropaneBRL0.385.0ug/L129176105/09/201019:52JT2-ButanoneBRL1.750ug/L129176105/09/201019:52JT2-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT2-HexanoneBRL0.6110ug/L129176105/09/201019:52JT4-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT4-IsopropyltolueneBRL0.265.0ug/L129176105/09/201019:52JT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/201019:52JTAcctoneBRL0.215.0ug/L129176105/09/201019:52JTBenzeneBRL0.215.0ug/L129176105/09/201019:52JTBromobenzeneBRL0.285.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.285.0ug/L129176105/09/201019:52JTBromodichloromethaneBRL0.225.0ug/L129176105/09/201019:52JTBromodichloromethaneBRL0.705.0ug/L129176105/09/201019:52JTBromodichloromethaneBRL0.495.0	1 4-Dichlorof	nenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
2-ButanoneBRL1.750ug/L129176105/09/201019:52JT2-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT2-HexanoneBRL0.6110ug/L129176105/09/201019:52JT4-ChlorotolueneBRL0.275.0ug/L129176105/09/201019:52JT4-SporopyltolueneBRL0.265.0ug/L129176105/09/201019:52JT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/201019:52JTAcetoneBRL5.050ug/L129176105/09/201019:52JTBenzeneBRL0.215.0ug/L129176105/09/201019:52JTBromobenzeneBRL0.285.0ug/L129176105/09/201019:52JTBromochloromethaneBRL0.225.0ug/L129176105/09/201019:52JTBromoformBRL0.495.0ug/L129176105/09/201019:52JTBromoformBRL0.495.0ug/L129176105/09/201019:52JTBromoformBRL0.495.0ug/L129176105/09/201019:52JTCarbon disulfideBRL0.415.0ug/L1291761<	2 2-Dichloror	ropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
2-Chlorotoluene BRL 0.27 5.0 ug/L 129176 1 05/09/2010 19:52 JT 2-Hexanone BRL 0.61 10 ug/L 129176 1 05/09/2010 19:52 JT 4-Chlorotoluene BRL 0.27 5.0 ug/L 129176 1 05/09/2010 19:52 JT 4-Isopropyltoluene BRL 0.26 5.0 ug/L 129176 1 05/09/2010 19:52 JT 4-Methyl-2-pentanone BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT Acetone BRL 5.0 50 ug/L 129176 1 05/09/2010 19:52 JT Benzene BRL 0.21 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromobenzene BRL 0.28 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromochloromethane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.70 5.0	2,2 Butanone		BRL		1.7	50	ug/L	129176	1	05/09/2010 19:52	JT		
2-Hexanone BRL 0.61 10 ug/L 129176 1 05/09/2010 19:52 JT 4-Chlorotoluene BRL 0.27 5.0 ug/L 129176 1 05/09/2010 19:52 JT 4-Isopropyltoluene BRL 0.26 5.0 ug/L 129176 1 05/09/2010 19:52 JT 4-Methyl-2-pentanone BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT Acetone BRL 5.0 50 ug/L 129176 1 05/09/2010 19:52 JT Benzene BRL 0.21 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromobenzene BRL 0.28 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromochloromethane BRL 0.28 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromochloromethane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.70 5.0	2-Chlorotolue	ene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
PrickatorieBRL0.275.0ug/L129176105/09/2010 19:52JT4-IsopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/2010 19:52JTAcetoneBRL5.050ug/L129176105/09/2010 19:52JTBenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.285.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.495.0ug/L129176105/09/2010 19:52JTCarbon disulfideBRL0.495.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910 <td>2-Hexanone</td> <td></td> <td>BRL</td> <td></td> <td>0.61</td> <td>10</td> <td>ug/L</td> <td>129176</td> <td>1</td> <td>05/09/2010 19:52</td> <td>JT</td>	2-Hexanone		BRL		0.61	10	ug/L	129176	1	05/09/2010 19:52	JT		
4-IsopropyltolueneBRL0.265.0ug/L129176105/09/2010 19:52JT4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/2010 19:52JTAcetoneBRL5.050ug/L129176105/09/2010 19:52JTBenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.285.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.665.0ug/L129176105/09/2010 19:52JTBromoformBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.705.0ug/L129176105/09/2010 19:52JTBromothaneBRL0.495.0ug/L129176105/09/2010 19:52JTBromothaneBRL0.415.0ug/L129176105/09/2010 19:52JTCarbon disulfideBRL0.415.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.115.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910 <td>4-Chlorotolue</td> <td>ene</td> <td>BRL</td> <td></td> <td>0.27</td> <td>5.0</td> <td>ug/L</td> <td>129176</td> <td>1</td> <td>05/09/2010 19:52</td> <td>JT</td>	4-Chlorotolue	ene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
4-Methyl-2-pentanoneBRL0.3910ug/L129176105/09/2010 19:52JTAcetoneBRL5.050ug/L129176105/09/2010 19:52JTBenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.285.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.665.0ug/L129176105/09/2010 19:52JTBromoformBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.705.0ug/L129176105/09/2010 19:52JTBromotifideBRL0.495.0ug/L129176105/09/2010 19:52JTCarbon disulfideBRL0.415.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.115.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910 <t< td=""><td>4-Isonronvlto</td><td>luene</td><td>BRL</td><td></td><td>0.26</td><td>5.0</td><td>ug/L</td><td>129176</td><td>1</td><td>05/09/2010 19:52</td><td>JT</td></t<>	4-Isonronvlto	luene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
AcetoneBRL5.050ug/L129176105/09/2010 19:52JTBenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.285.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.665.0ug/L129176105/09/2010 19:52JTBromodichloromethaneBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.705.0ug/L129176105/09/2010 19:52JTBromomethaneBRL0.495.0ug/L129176105/09/2010 19:52JTCarbon disulfideBRL0.415.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.115.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.3910ug/L129176105/09/2010 19:52JT	4-Methyl-2-n	entanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 19:52	JT		
BenzeneBRL0.215.0ug/L129176105/09/2010 19:52JTBromobenzeneBRL0.285.0ug/L129176105/09/2010 19:52JTBromochloromethaneBRL0.665.0ug/L129176105/09/2010 19:52JTBromodichloromethaneBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.225.0ug/L129176105/09/2010 19:52JTBromoformBRL0.705.0ug/L129176105/09/2010 19:52JTBromomethaneBRL0.495.0ug/L129176105/09/2010 19:52JTCarbon disulfideBRL0.415.0ug/L129176105/09/2010 19:52JTCarbon tetrachlorideBRL0.255.0ug/L129176105/09/2010 19:52JTChlorobenzeneBRL0.115.0ug/L129176105/09/2010 19:52JTChloroethaneBRL0.3910ug/L129176105/09/2010 19:52JT	Acetone		BRL		5.0	50	ug/L	129176	1	05/09/2010 19:52	JT		
Bromobenzene BRL 0.28 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromochloromethane BRL 0.66 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromodichloromethane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.70 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chloroethane BRL 0.39 1	Benzene		BRL		0.21	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Bromochloromethane BRL 0.66 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromodichloromethane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.70 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.70 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 <	Bromohenzer	ne	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Bromodichloromethane BRL 0.22 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromoform BRL 0.70 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT	Bromochloro	methane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Bromoform BRL 0.70 5.0 ug/L 129176 1 05/09/2010 19:52 JT Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT	Bromodichlo	romethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Bromomethane BRL 0.49 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobetnzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT	Bromoform		BRL		0.70	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Carbon disulfide BRL 0.41 5.0 ug/L 129176 1 05/09/2010 19:52 JT Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JT Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT	Bromometha	ne	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 19:52	JŢ		
Carbon tetrachloride BRL 0.25 5.0 ug/L 129176 1 05/09/2010 19:52 JJ Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 JJ Chlorobenzene BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JJ	Carbon disult	fide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Chlorobenzene BRL 0.11 5.0 ug/L 129176 1 05/09/2010 19:52 J7 Chloroethane BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 J7	Carbon tetrac	chloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
Chloroethane BRL 0.39 10 ug/L 129176 1 05/09/2010 19:52 JT	Chlorobenzer	ne	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 19:52	JT		
	Chloroethane		BRL		0.39	10	ug/L	129176	1	05/09/2010 19:52	JT		
Chloroform BRL 0.30 5.0 ug/L 129176 1 05/09/2010 19:52 JT	Chloroform		BRL		0.30	5.0	ug/L	129176	1	05/09/2010 19:52	JT		

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, I	ne Y	8 D	w-	IB		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-009				Client S Collecti Matrix:	Sample I ion Date	D: G10 : 4/27 Aqu	37-7(/201(eous)-9) 11:20:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 19:52	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 19:52	JT
cis-1.3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 19:52	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 19:52	ΤL
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 19:52	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 19:52	JT
m. p- Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 19:52	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 19:52	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 19:52	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
o-Xvlene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 19:52	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 19:52	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-I 2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-1 3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-1 4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 19:52	ΤL
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Vinvl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 19:52	JT
Surr: 4-Bromofluorobenzene	75.2		0	60,1-127	%REC	129176	1	05/09/2010 19:52	JT
Surr: Dibromofluoromethane	102		0	79.6-126	%REC	129176	1	05/09/2010 19:52	JT
Surr: Toluene-d8	86.1		0	78-116	%REC	129176	1	05/09/2010 19:52	JT

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	· EB	, -7	82			Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-010				Client S Collecti Matrix:	0-10 0 12:30:00 PM				
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	Л
1.1.1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	I	05/09/2010 20:19	JT
1.1.2.2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1.1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 20:19	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 20:19	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:19	Τl
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 20:19	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:19	ΤL
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:19	Τι
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:19	ΤL
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 20:19	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:19	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:19	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	c	E	B-	·02		Da	ate:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-010				Client Collect Matrix	Sample I tion Date	D: G10 : 4/27 Aqu	137-70-10 1/2010 12:30:00 PM Jeous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			((SW503)	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:19	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 20:19	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:19	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 20:19	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 20:19	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	I	05/09/2010 20:19	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 20:19	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:19	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:19	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:19	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	Л
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 20:19	Л
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:19	Л
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:19	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:19	Л
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 20:19	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 20:19	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 20:19	JT
Surr: 4-Bromofluorobenzene	74.7		0	60.1-127	%REC	129176	1	05/09/2010 20:19	JT
Surr: Dibromofluoromethane	108		0	79.6-126	%REC	129176	1	05/09/2010 20:19	JT
Surr: Toluene-d8	90.2		0	78-116	%REC	129176	1	05/09/2010 20:19	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

.

Analytical Environmental Services, Inc	48	m	W-1	4		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-011				Client S Collecti Matrix:	ample I on Date:	D: G10 4/27 Aqu	37-7(/201(eous	0-11 0 4:05:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1 2 4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.2.4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:48	Л
1 2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:48	Л
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1 2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1 3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1 3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT
1 4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT
2 2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 20:48	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 20:48	Л
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:48	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 20:48	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:48	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:48	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:48	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 20:48	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 20:48	Л
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Bromochloromethane	BRL		0.66	5,0	ug/L	129176	1	05/09/2010 20:48	Л
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:48	Л
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:48	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:48	Л

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	c	4	ŶМи	1-14		Da	ite:	11-May-10	
Client: SGS North America, Inc. Project Name: G1037-70 Lab ID: 1005450-011				Client S Collect Matrix	Sample I ion Date :	D: G10 : 4/27 Aqu	: G1037-70-11 4/27/2010 4:05:00 PM Aqueous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analysi
Volatile Organic Compounds by GC/MS	SW8260B			(SW503	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:48	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 20:48	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:48	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 20:48	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 20:48	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:48	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 20:48	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:48	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:48	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:48	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 20:48	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:48	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:48	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 20:48	ΤL
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 20:48	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:48	TL
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 20:48	TL
Surr: 4-Bromofluorobenzene	74.7		0	60.1-127	%REC	129176	1	05/09/2010 20:48	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176	1	05/09/2010 20:48	JT
Surr: Toluene-d8	90.7		0	78-116	%REC	129176	1	05/09/2010 20:48	JT

Qualifiers:	Value exceeds maximum contaminant level
-------------	---

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Page 28 of 60

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-012				Client S Collecti Matrix:	ample I on Date:	D: G10 4/27 Aqu	37-7(/201(eous	0-12 0 3:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 21:17	JT
I, I, 2, 2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 21:17	ΤL
1.1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1 2 3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1 2 4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1 2 4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2-Dichloropropage	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.2.5 Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.3 Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.3 Dichloropropage	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1.4 Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
2.2 Dichleronrongne	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 21:17	JT
2,2-Dichlorophopane	BRL		17	50	ug/L	129176	1	05/09/2010 21:17	JT
2-Butanone	BRI		0.27	50	ug/L	129176	1	05/09/2010 21:17	ΤL
2-Chiorotoluene	BRI		0.61	10	ug/L	129176	1	05/09/2010 21:17	JT
2-Hexanone	BRI		0.27	5.0	ug/L	129176	1	05/09/2010 21:17	JT
4-Chiorotoluene	BRI		0.27	5.0	-0 = ug/L	129176	1	05/09/2010 21:17	JT
4-Isopropyholuene			0.20	10	- <i>e</i> = ue/L	129176	1	05/09/2010 21.17	TL
4-Methyl-2-pentanone	DKL 0.8	т	5.0	50	-9 - ug/L	129176	1	05/09/2010 21:17	Л
Acetone	9.0 BDI	,	0.21	50	-e = ug/L	129176	1	05/09/2010 21:17	Л
Benzene			0.21	5.0	- <i>9</i> –	129176		05/09/2010 21:17	JT
Bromobenzene			0.26	5.0	- <i>g</i> 2	129176	1	05/09/2010 21:17	Л
Bromochloromethane	DRL		0.00	5.0	ug/L	129176	1	05/09/2010 21:17	IT
Bromodichloromethane			0.22	5.0	ug/L	129176	1	05/09/2010 21:17	IT
Bromotorm			0.70	5.0	ug/I	129176	;	05/09/2010 21:17	п
Bromomethane	שמ		0.49	5.0	ч ₆ , с це/Г	129176	1	05/09/2010 21:17	IT.
Carbon disulfide	BKL		0.41	5.0	чу С 110/I	129176	1	05/09/2010 21:17	л IT
Carbon tetrachloride	BKL		0.25	5.0	ug/I	120176	1	05/09/2010 21:17	л IT
Chlorobenzene	BKL		0.11	10	ug/L ug/I	129170	1	05/09/2010 21:17	л IT
Chloroethane	BKL		0.39	10	ug/L	129170	1	05/09/2010 21:17	JI IT
Chloroform	BKL		0.30	5.0	սբ/Ե	1271/0	I	05/05/2010 21.17	71

- BR1. Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	c	48	mu	1-13		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-012				Client S Collecti Matrix:	Sample I ion Date :	D: G10 : 4/27 Aqu	37-7(/201(eous)-12) 3:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW503(0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:17	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 21:17	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:17	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 21:17	ΤL
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 21:17	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:17	JT
m.p-Xvlene	BRL		0.25	10	ug/L	129176	1	05/09/2010 21:17	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:17	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:17	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
o-Xvlene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 21:17	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 21:17	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 21:17	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 21:17	JT
Surr: 4-Bromofluorobenzene	76.9		0	60.1-127	%REC	129176	1	05/09/2010 21:17	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176	1	05/09/2010 21:17	JT
Surr: Toluene-d8	87.5		0	78-116	%REC	129176	1	05/09/2010 21:17	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit

.

- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	· 4	1 DU	14			Da	ite:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-013				Client S Collecti Matrix:	ample I on Date	D: G10 : 4/27 Aqu	37-7(/201(eous	0-13 0 2:58:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			()	SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	I	05/09/2010 21:45	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 21:45	Л
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2.4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
2.2-Dichloropropane	BRL		0,38	5.0	ug/L	129176	1	05/09/2010 21:45	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 21:45	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:45	Л
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 21:45	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:45	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:45	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 21:45	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 21:45	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 21:45	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 21:45	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client: SGS North America, Inc.	<u>ic</u> 7		ω^{2}	T Client	Sample I	Da Da D: G10	G1037-70-13		
Project Name: G1037-70				Collect	ion Date	: 4/27	/2010) 2:58:00 PM	
Lab ID: 1005450-013				Matrix		Aqu	eous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			((SW503	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:45	л
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 21:45	Л
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 21:45	Л
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	I	05/09/2010 21:45	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:45	JT
Ethylbenzene	0.46	J	0.19	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 21:45	л
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 21:45	л
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 21:45	TL
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:45	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 21:45	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:45	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:45	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT
o-Xylene	3.0	J	0.11	5.0	ug/L	129176	1	05/09/2010 21:45	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 21:45	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:45	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:45	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 21:45	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 21:45	JT
Trichloroethene	2.2	J	0.23	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 21:45	JT
Surr: 4-Bromofluorobenzene	82.4		0	60.1-127	%REC	129176	1	05/09/2010 21:45	JT
Surr: Dibromofluoromethane	108		0	79.6-126	%REC	129176	1	05/09/2010 21:45	JT
Surr: Toluene-d8	88.3		0	78-116	%REC	129176	1	05/09/2010 21:45	JT

Qualifiers:

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

Value exceeds maximum contaminant level

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	c 481	mh)-14	>		Da	ite:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-014				Client S Collecti Matrix:	Sample I ion Date:	D: G10 : 4/27 Aqu	37-7(/201(eous	0-14 0 3:15:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	I	05/09/2010 22:14	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,1-Dichloroethane	3.0	J	0.29	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,1-Dichloroethene	9.6		0.30	5.0	ug/L	129176	I	05/09/2010 22:14	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:14	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:14	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 22:14	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 22:14	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:14	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 22:14	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:14	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 22:14	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 22:14	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 22:14	· JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 22:14	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 22:14	JT

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

BRL Not detected at MDL

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-014				Client Collect Matrix	Sample I ion Date :	D: G10 : 4/27 Aqu	0-14 0 3:15:00 PM		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/N	MS SW8260B				SW503	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:14	JT
cis-1,2-Dichloroethene	3.4	J	0.35	5.0	ug/L	129176	1	05/09/2010 22:14	π
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 22:14	л
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	TI.
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:14	m
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 22:14	IT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 22:14	IT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:14	ш
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 22:14	IT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	IT.
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:14	IT.
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:14	IT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	IT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:14	IT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	JI IT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 22:14	IT J
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Tetrachloroethene	3.5	J	0.51	5.0	ug/L	129176	1	05/09/2010 22:14	IT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 22:14	IT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:14	IT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 22:14	IT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1 0	05/09/2010 22:14	IT
Trichloroethene	15		0.23	5.0	ug/L	129176	1 0	05/09/2010 22:14	IT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1 (05/09/2010 22:14	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1 (05/09/2010 22:14	JT
Surr: 4-Bromofluorobenzene	75.5		0	60.1-127	- %REC	129176	1 (05/09/2010 22.14	іт
Surr: Dibromofluoromethane	112		0	79.6-126	%REC	129176	1 (05/09/2010 22.14	JT.
Surr: Toluene-d8	88.9		0	78-116	%REC	129176	1 (05/09/2010 22.14	IT

Qualifiers:

- BRL Not detected at MDL
- II Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

Value exceeds maximum contaminant level

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

.

· · · · · · · · · · · · · · · · · · ·			\sim						
Client: SGS North America, Inc. Project Name: G1037-70 Lab ID: 1005450-015				Client S Collecti Matrix:	Sample I ion Date: :	D: G10 : 4/27 Aqu	37-7(/201(eous	0-15 0 12:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1, I, 2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 22:43	TL
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1.3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	л
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	л
2.2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 22:43	JT
2-Butanone	BRL		1,7	50	ug/L	129176	1	05/09/2010 22:43	л
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:43	л
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 22:43	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:43	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 22:43	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 22:43	Л
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 22:43	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 22:43	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 22:43	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In		N D	W^{2}	3		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-015				Client Collect Matrix	Sample I tion Date (:	D: G10 : 4/27 Aqu	37-7(/201(eous)-15) 12:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B				(SW503	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:43	TL
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 22:43	TL
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Dibromochloromethane	BRL		0.28	5,0	ug/L	129176	1	05/09/2010 22:43	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:43	TL
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 22:43	JT
lodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 22:43	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 22:43	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:43	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 22:43	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:43	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:43	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 22:43	л
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:43	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 22:43	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 22:43	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:43	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 22:43	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 22:43	JT
TrichIoroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1 (05/09/2010 22:43	JT
Vinyl chloride	BRL		0.38	2.0	սց/Լ	129176	1 (05/09/2010 22:43	JT
Surr: 4-Bromofluorobenzene	73.5		0	60.1-127	%REC	129176	1 (05/09/2010 22:43	JT
Surr: Dibromofluoromethane	109		0	79.6-126	%REC	129176	1 (05/09/2010 22:43	JT
Surr: Toluene-d8	89.8		0	78-116	%REC	129176	1 (05/09/2010 22:43	JT

Qualifiers:

Value exceeds maximum contaminant level
 BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank .

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client: SGS North America, Inc.			100	Client S	Sample I	D: G10	37-7()-16	
Lab ID: 1005450-016				Matrix;	ion Date:	Aqu	eous	70.55.00 AW	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:12	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 23:12	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 23:12	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:12	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 23:12	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:12	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 23:12	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 23:12	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 23:12	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	l	05/09/2010 23:12	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 23:12	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 23:12	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-017		·		Clien Collec Motri	t Sample ction Da	te: 4/2	1037- 27/20	70-17 10 11:55:00 AM	
Analyses	Result	Qual	MDL	Reporting	g Units	BatchII	Jueou D D	S ————————————————————————————————————	Analyst
Volatile Organic Compounds by GC/MS	SW8260B				(SW50)				
1,1,1,2-Tetrachloroethane	BDI		0.27		(31930.	30B)			
1,1,1-Trichloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1,2,2-Tetrachloroethane			0.094	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1,2-Trichloroethane			0.51	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1-Dichloroethane			0.33	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.1-Dichloroethene	DKL		0.29	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.1-Dichloropropene	DRL		0.30	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2.3-Trichlorobenzene	BKL		0.49	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2.3-Trichloropropage	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2.4-Trichlorohenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2.4-Trimethylbenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2-Dibromo 2 ablaranzanza	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1.2-Dibromoethene	BRL		0.31	5.0	ug/L	129176	·1	05/09/2010 23:41	JT
1.2 Dishlorohomon	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:41	Л
1,2-Dichloroethan	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 23:41	IT
1,2 Dichlanger	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 23:41	IT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 23:41	IT
1,3,3-1 rimethylbenzene	2.6	J	0.18	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 23:41	JT IT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:41	JI IT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:41	л гт
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 23:41	JI IT
2-Butanone	BRL		1.7	50	ug/L	129176	;	05/09/2010 23:41	J1 IT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:41	JI TT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 23:41	11
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:41	11
4-Isopropyltoluene	BRL		0.26	5.0	ug/1.	129176	1	05/09/2010 23:41	JT
4-Methy1-2-pentanone	BRL		0.39	10	-g = ug/L	120176	1	05/09/2010 23:41	JT
Acetone	BRL		5.0	50	ug/L	129170		5/09/2010 23:41	JT
Benzene	BRL	4	0.21	50	ug/I	129170	1 (5/09/2010 23:41	JT
Bromobenzene	BRL	(0.28	5.0	ug/L	129170	1 (05/09/2010 23:41	JT
Bromochloromethane	BRL	ć	0.66	5.0	ug/L	129176	1 (05/09/2010 23:41	JT
Bromodichloromethane	BRL	, in the second s	1.00 1.22	5.0	ug/L	129176	1 (5/09/2010 23:41	JT
Bromoform	BRI.	(5.22 7.70	5.0	ug/L	129176	1 (5/09/2010 23:41	JT
Bromomethane	BRI	() /0	5.0	ug/L	129176	1 0	5/09/2010 23:41	JT
Carbon disulfide	BRI) 41	5.0	ug/L	129176	1 0	5/09/2010 23:41	JT
Carbon tetrachloride	BRI	ر م) 25	5.0	ug/L	129176	1 0	5/09/2010 23:41	JT
Chlorobenzene	BRI	ں م	د <u>ک</u> . ۱۱	5.0	ug/L	129176	1 0	5/09/2010 23:41	JT
Chloroethane	RRI	0	611 120	5,0	ug/L	129176	1 0	5/09/2010 23:41	JT
Chloroform	BRI	0	20	10	ug/L	129176	1 0	5/09/2010 23:41	JT
	DVT	0	.50	5.0	ug/L	129176	I 0.	5/09/2010 23:41	JT

BRL Not detected at MDL

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

Estimated value detected below Reporting Limit I

Greater than Result value >

Less than Result value <

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Page 38 of 59

Page 38 of 60

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-017				Clien Colle Matr	t Sample ction Dat ix:	ID: G1 e: 4/2 Aq	037- 7/20 ueou	-70-17 110 11:55:00 AM	
Analyses	Result	Qual	MDL	Reportin Limit	g Units	BatchID	D	F Date Analyzed	 Analys
Volatile Organic Compounds by GC/MS	SW8260B				(SW503				
Chloromethane	BRL		0.41	10	(51150)	, ()			
cis-1,2-Dichloroethene	BRI		0.41	10	ug/L	129176	1	05/09/2010 23:41	JT
cis-1,3-Dichloropropene	BRI		0.33	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Dibromochloromethane	BDI		0.74	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Dibromomethane	DRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Dichlorodifluoromethane	DRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Ethylbenzene	DKL		0.41	10	ug/L	129176	1	05/09/2010 23:41	JT
Hexachlorobutadiene	BKL		0.19	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Iodomethane	BKL		0.93	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Isonronyl ether	BKL		0.33	10	ug/L	129176	1	05/09/2010 23:41	JT
Isopropylence	BKL		0.78	10	ug/L	129176	1	05/09/2010 23:41	JТ
m n-Xylene	1.9	J	0.19	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Methyl tert, butyl other	BRL		0.25	10	ug/L	129176	1	05/09/2010 23:41	JT
Methylene chlorido	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:41	JT
n-Butylbenzono	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 23:41	JT
n Bronylhongono	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Nanhthalana	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 23:41	JT
	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:41	JT
o-Aytene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Sec-BulyIDenzene	2.7	J	0.28	5.0	ug/L	129176	1	05/09/2010 23:41	IT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 23:41	JT
T-t	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 23:41	IT
Tetrachioroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 23:41	IT
l'oluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 23:41	IT IT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 23:41	IT IT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 23:41	JT IT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 23:41	JT TT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 23:41	л IT
Irichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 23:41	JI IT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	I	05/09/2010 23:41	JI IT
Surr: 4-Bromofluorobenzene	79.5		0	60.1-127	%REC	129176	- 1 -	05/09/2010 23:41	JI IT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176		05/09/2010 23:41	JI IT
Surr: Toluene-d8	89.1		0	78-116	%REC	129176	1 1	05/09/2010 22:41	JI IT

Qualifiers:

* Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client: SGS North America, Inc. Project Name: G1037-70				Clien	t Sample	e ID: G	1037	-70-18]
Lab ID: 1005450-018				Matri	ix:	Le: 4/	27/20 aueoi	010 10:50:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	g Unit:	s BatchI	D D	PF Date Analyzed	Analysi
Volatile Organic Compounds by GC/MS S	SW8260B				(SW50)				
1,1,1,2-Tetrachloroethane	BRL		0 37	5.0	(5 W 50.	3013			
1,1,1-Trichloroethane	10		0.094	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1,2,2-Tetrachloroethane	BRI		0.094	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1,2-Trichloroethane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloroethane	47	т	0.33	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloroethene	48	5	0.29	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloropropene	BRI		0.30	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,3-Trichlorobenzene			0.49	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,3-Trichloropropane	DKL		0.43	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2.4-Trichlorobenzene	DKL,		0.32	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2.4-Trimethylbenzene	BKL		0.46	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2-Dibromo-3-chloropropage	BKL		0.34	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1 2-Dibromoethane	BKL		0.31	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2-Dichlorobenzena	BRL		0.29	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2-Dichloroethana	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.2-Dichloropropage	BRL		0.16	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1.3.5. Trimethulker	BRL		0.48	5.0	ug/L	129176	1	05/10/2010 00:09	п
1.3 Dichlorohannan	BRL		0.18	5.0	ug/L	129176	1	05/10/2010 00:09	IT
1,3-Dichlorowe	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 00:09	IT
1,3-Dichlorophopane	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:09	л ГГ
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:09	JT IT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/10/2010 00:09	JI IT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/10/2010 00:09	JI IT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:09	л ГТ
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/10/2010 00:09	JI
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:09	JI
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 00:09	JI
4-Methyl-2-pentanone	BRL		0.39	10	ue/ï.	129176	1	05/10/2010 00:09]]
Acetone	BRL		5.0	50	ug/L	120176	1	05/10/2010 00:09	JT
Benzene	BRL		0.21	5.0	- <i>5</i> =	120176	1	05/10/2010 00:09	JT
Bromobenzene	BRL	(0.28	5.0	ug/I	129170	1	05/10/2010 00:09	JT
Bromochloromethane	BRL	(0.66	5.0	ug/I	129170	1 1	05/10/2010 00:09	JT
Bromodichloromethane	BRL	() 22	5.0	ug/L	129170	1 (05/10/2010 00:09	JT
Bromoform	BRL	() 70	5.0	ug/L	129176	1 (05/10/2010 00:09	JT
Bromomethane	BRL	, () 49	5.0	ug/L	129176	1 (05/10/2010 00:09	JT
Carbon disulfide	BRL	r r) 41	5.0	ug/L	1291/6	1 (05/10/2010 00:09	JT
Carbon tetrachloride	BRL	r c) 25	5.0	ug/L	129176	1 (05/10/2010 00:09	JT
Chlorobenzene	BRL	n 1	11	5.0	ug/L	129176	1 0	05/10/2010 00:09	JT
Chloroethane	BRI	0	30	J.U 10	ug/L	129176	1 0	5/10/2010 00:09	JT
Chloroform	RRI	0	20	10	ug/L	129176	1 0	5/10/2010 00:09	JT
	DICL	0	.50	5.0	ug/L	129176	1 0	5/10/2010 00:09	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client: SGS North America, Inc. Project Name: G1037-70				Clier	nt Sample	EID: G	1037	7-70-18	
Lab ID: 1005450-018				Mati	rix:	A.	queo	us	
Analyses	Result	Qual	MDL	Reportin Limit	ng Units	s BatchII	D I	DF Date Analyzed	 Analysi
Volatile Organic Compounds by GC/MS	SW8260B				(SW50)	200			
Chloromethane	BRI		0.41	10	(51150,	500)			
cis-1,2-Dichloroethene	3.4	,	0.41	10	ug/L	129176	1	05/10/2010 00:09	JT
cis-1,3-Dichloropropene	ד.כ ופת	J	0.35	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dibromochloromethane			0.74	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dibromomethane			0.28	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dichlorodifluoromethane			0.37	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Ethylbenzene			0.41	10	ug/L	129176	1	05/10/2010 00:09	JT
Hexachlorobutadiene	DRL DDI		0.19	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Iodomethane	BKL		0.93	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Isopropyl ether	BRL		0.33	10	ug/L	129176	1	05/10/2010 00:09	JT
Isopropylbenzene	BKL		0.78	10	ug/L	129176	1	05/10/2010 00:09	л
m.p-Xvlene	BKL		0.19	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Methyl tert-hutyl ether	BKL		0.25	10	ug/L	129176	1	05/10/2010 00:09	JT
Methylene chloride	BKL		0.37	5.0	ug/L	129176	1	05/10/2010 00:09	JT
n-Butylhenzene	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 00:09	Л
n-Propylhenzene	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Naphthalene	BRL		0.23	5.0	ug/L	129176	1	05/10/2010 00:09	JT
0-Xylene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:09	JT
sec-Butylhenzene	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Styrene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:09	Л
tert-Butylbenzene	BRL		0.10	5.0	ug/L	129176	1	05/10/2010 00:09	л
Tetrachloroethene	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Toluene	9.5		0.51	5.0	ug/L	129176	1	05/10/2010 00:09	JT
trans-12-Dichloroothana	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 00:09	JT
trans-1.3-Dichloropropaga	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 00:09	JT
trans-1 4-Dichloro 2 butons	BRL		0.58	5.0	ug/L	129176	1	05/10/2010 00:09	JT.
Trichloroethene	BRL		3.1	10	ug/L	129176	1	05/10/2010 00:09	JT
Trichlorofluoromethane	150		0.23	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Vinvl chloride	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Surr 4-Bromofluoroberge	BRL	(0.38	2.0	ug/L	129176	1	05/10/2010 00:09	JT
Surr: Dibromofluoromether-	76.3		0	60.1-127	%REC	129176	1	05/10/2010 00:09	JT
Sur: Toluene_dg	113		0	79.6-126	%REC	129176	1	05/10/2010 00:09	TL
viuelie-uo	92.3		0	78-116	%REC	129176	1	05/10/2010 00:09	JT

Qualifiers:

Value exceeds maximum contaminant level
BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical En	vironmental Services, Inc	48	DU	<u>с-3</u>	Æ		Da	te:	11-May-10	
Client: Project Name: Lab ID:	SGS North America, Inc. G1037-70 1005450-019				Client S Collect Matrix	Sample I ion Date: :	D: G10 : 4/27 Aqu	37-7(/201(eous	0-19 0 9:55:00 AM	
Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analysi
Volatile Organ	ic Compounds by GC/MS S	W8260B			(SW503()B)			
1,1,1,2-Tetrac	hloroethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,1,1-Trichlor	oethane	4.9	J	0.094	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
1,1,2,2-Tetrac	hloroethane	BRL		0.51	5.0	ug/L	129176	1	05/10/2010 00:37	л
1,1,2-Trichlor	oethane	BRL		0.33	5.0	ug/L	129176	1	05/10/2010 00:37	.TI.
1,1-Dichloroe	thane	5.7		0.29	5,0	ug/L	129176	1	05/10/2010 00:37	JT
1,1-Dichloroet	thene	22		0.30	5.0	ug/L	129176	1	05/10/2010 00.37	IT
1,1-Dichlorop	ropene	BRL		0.49	5.0	ug/L	129176	1	05/10/2010 00:37	IT
1.2.3-Trichlor	obenzene	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 00:37	IT
1.2.3-Trichlor	opropane	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:37	IT
1.2.4-Trichlor	obenzene	BRL		0.46	5.0	ug/L	129176	1	05/10/2010 00:37	JI TT
1.2.4-Trimethy	vlbenzene	BRL		0.34	5.0	-9- ug/L	129176	1	05/10/2010 00:37	JI IT
1.2-Dibromo-3	3-chloropropane	BRL		0.31	5.0	- <i>g</i> = ng/L	129176	1	05/10/2010 00:37	JI TT
1 2-Dibromoet	thane	BRL		0.29	5.0	ug/L	120176	1	05/10/2010 00:37	JI IT
1.2-Dichlorob	enzene	BRI		0.36	5.0	ug/L	129170	1	05/10/2010 00:37	Л
1.2-Dichloroet	thane	BRI		0.16	5.0	ug/L	120176	1	05/10/2010 00.37	JI
1,2-Dichlorop	ronane	BRI		0.48	5.0	ug/L ug/I	120176	1	05/10/2010 00:37	Л.
1.3.5-Trimethy	vlbenzene	BRI		0.40	5.0	ug/L	129170	1	05/10/2010 00:37	JI
1,3,5-Thinking	anzana			0.18	5.0	ug/L	129170	1	05/10/2010 00:37	Л
1.3-Dichloropy	ronane			0.24	5.0	ug/L	129170	1	05/10/2010 00:37	JI TT
1,5-Dichlorob				0.32	5.0	ug/L	129176	1	05/10/2010 00:37	J1
2.2 Dichloropy	ranana	DRL,		0.32	5.0	ug/L	129176	1	05/10/2010 00:37	JI
2,2-Dichloroph	Topane	DRL		0.30	5.0	ug/L	129176	1	05/10/2010 00:37	JI
2-Dutanone 2 Chlorotoluor		DRL		1.7	50	ug/L	129176	1	05/10/2010 00:37	1T.
2-Chiorototuer	lie	DRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:37	JT
2-riexanone		BKL		0.61	10	ug/L	129176	1	05/10/2010 00:37	JT
4-Chiorototuer		DRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:37	J T
4-Isopropyiton	uene	BKL		0.26	5.0	ug/L	129176	1	05/10/2010 00:37	JT
4-Metnyi-2-pe	ntanone	BRL		0.39	10	ug/L	129176	1	05/10/2010 00:37	JT
Acetone		BRL		5.0	50	ug/L	129176	1	05/10/2010 00:37	JT
Benzene		BRL		0.21	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromobenzene		BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromochlorom	hethane	BRL		0.66	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromodichloro	ometnane	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromotorm		BRL		0.70	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromomethane	e	BRL		0.49	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Carbon disulfic	de	BRL		0.41	5.0	ug/L	129176	I	05/10/2010 00:37	JT
Carbon tetrach	loride	BRL		0.25	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Chlorobenzene	;	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Chloroethane		BRL		0.39	10	ug/L	129176	1	05/10/2010 00:37	JT
Chloroform		BRL		0.30	5.0	ug/L	129176	1	05/10/2010 00:37	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	1c 48	Dw-	2		Da	te:	11-May-10	
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-019		·	Client Collec Matrix	Sample I tion Date: x:	D: G10 4/27 Aqu	37-7(/201(eous)-19) 9:55:00 AM	
Analyses	Result	Qual MDI	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030)B)			
Chloromethane	BRL	0.41	10	ug/L	129176	1	05/10/2010 00:37	Л
cis-1.2-Dichloroethene	7.4	0.35	5.0	ug/L	129176	1	05/10/2010 00:37	JT
cis-1.3-Dichloropropene	BRL	0.74	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Dibromochloromethane	BRL	0.28	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
Dibromomethane	BRL	0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Dichlorodifluoromethane	BRL	0.41	10	ug/L	129176	1	05/10/2010 00:37	JT
Ethylbenzene	BRL	0.19	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Hexachlorobutadiene	BRL	0.93	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Iodomethane	BRL	0.33	10	ug/L	129176	1	05/10/2010 00:37	JT
Isopropyl ether	BRL	0.78	10	ug/L	129176	1	05/10/2010 00:37	JT
Isopropyleane	BRL	0.19	5.0	ug/L	129176	1	05/10/2010 00:37	Τl
m.p-Xvlene	BRL	0.25	10	ug/L	129176	1	05/10/2010 00:37	JT
Methyl tert-butyl ether	BRL	0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Methylene chloride	BRL	0.36	5.0	ug/L	129176	1	05/10/2010 00:37	JT
n-Butylbenzene	BRL	0.22	5.0	ug/L	129176	1	05/10/2010 00:37	JT
n-Propylbenzene	BRL	0.23	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
Naphthalene	BRL	0.28	5.0	ug/L	129176	1	05/10/2010 00:37	JT
o-Xvlene	BRL	0.11	5.0	ug/L	129176	1	05/10/2010 00:37	Τl
sec-Butylbenzene	BRL	0.28	5.0	ug/L	129176	1	05/10/2010 00:37	TL
Styrene	BRL	0.10	5.0	ug/L	129176	1	05/10/2010 00:37	JT
tert-Butylbenzene	BRL	0.24	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Tetrachloroethene	BRL	0.51	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Toluene	BRL	0.26	5.0	ug/L	129176	1	05/10/2010 00:37	JT
trans-1.2-Dichloroethene	BRL	0.43	5.0	ug/L	129176	1	05/10/2010 00:37	JT
trans-1.3-Dichloropropene	BRL	0.58	5.0	ug/L	129176	1	05/10/2010 00:37	JT
trans-1,4-Dichloro-2-butene	BRL	3.1	10	ug/L	129176	1	05/10/2010 00:37	JT
Trichloroethene	42	0.23	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Trichlorofluoromethane	BRL	0.31	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Vinyl chloride	BRL	0.38	3 2.0	ug/L	129176	1	05/10/2010 00:37	JT
Surr: 4-Bromofluorobenzene	77.7	0	60.1-127	%REC	129176	1	05/10/2010 00:37	JT
Surr: Dibromofluoromethane	111	0	79.6-126	%REC	129176	1	05/10/2010 00:37	Τl
Surr: Toluene-d8	92.9	0	78-116	%REC	129176	1	05/10/2010 00:37	JT

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Project Name: G1037-70 _ab ID: 1005450-020			Collecti Matrix:	Collection Date: Matrix:			4/27/2010 10:00:00 AM Aqueous			
Analyses	Result Qu	ial MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys		
Volatile Organic Compounds by GC/MS	SW8260B		(SW503()B)					
1,1,1,2-Tetrachloroethane	BRL	0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.1.1-Trichloroethane	BRL	0.094	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.1.2.2-Tetrachloroethane	BRL	0.51	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.1.2-Trichloroethane	BRL	0.33	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1 1-Dichloroethane	BRL	0.29	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.1-Dichloroethene	BRL	0.30	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1 1-Dichloropropene	BRL	0.49	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1 2 3-Trichlorobenzene	BRL	0.43	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2.3-Trichloropropage	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2.4-Trichlorobenzene	BRL	0.46	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1 2 4-Trimethylbenzene	BRL	0.34	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2-Dibromo-3-chloropronane	BRL	0.31	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2-Dibromoethane	BRL	0.29	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2-Dichlorobenzene	BRL	0.36	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2-Dichloroethane	BRL	0,16	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.2-Dichloroptonane	BRL	0.48	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.3.5-Trimethylbenzene	BRL	0.18	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.3.Dichlorobenzene	BRL	0.24	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.3-Dichloropropage	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
1.4 Dichlorobenzene	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
2.2-Dichlorontonane	BRL	0.38	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
2,2-Dichoropropule	BRL	1.7	50	ug/L	129176	1	05/10/2010 01:06	ΤL		
2 Chlorotoluene	BRL	0.27	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
2 Hevenone	BRL	0.61	10	ug/L	129176	1	05/10/2010 01:06	JT		
4 Chlorotoluane	BRL	0.27	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
4-Chlorotototuene	BRL	0.26	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
4-Isopropyholdene	BRL	0.39	10	ug/L	129176	1	05/10/2010 01:06	JT		
4-Methyl-2-pentatione	BRL	5.0	50	ug/L	129176	1	05/10/2010 01:06	JT		
Bangana	BRL	0.21	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Benzene	BRL	0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Dromobleromethane	BRI.	0.66	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Dromotiobloromathana	BRL	0.22	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Dromodicition officitiatic	BRL	0.70	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Dromomethene	BRL	0.49	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Corbon disulfide	BRL	0.41	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Carbon tatrashlarida	BRL	0.25	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Chlorabangana	RRL	0.11	5.0	ug/L	129176	1	05/10/2010 01:06	JT		
Chloroothana	RRL	0.39	10	ug/L	129176	1	05/10/2010 01:06	JT		
Chioroeinane	RRI	0.30	50	ug/L	129176	1	05/10/2010 01:06	JT		

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In	c	4	m	W-111	R	Da	te:	11-May-10	n
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-020				Client S Collectio Matrix:	ample I on Date:	D: G10 4/27 Aqu	37-7(/201(eous)-20) 10:00:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B			(5	SW503()B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 01:06	JT
cis-1 2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/10/2010 01:06	JT
cis-1,2-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 01:06	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Heyachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/10/2010 01:06	JT
lodomethane	BRL		0.33	10	ug/L	129176	1	05/10/2010 01:06	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/10/2010 01:06	JT
Isopropylenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 01:06	JT
m n-Yvlene	BRL		0.25	10	ug/L	129176	1	05/10/2010 01:06	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 01:06	JT
n Butulbenzene	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 01:06	JT
n-Butylochzene	BRL		0.23	5.0	ug/L	129176	1	05/10/2010 01:06	JT
N-riopyidenzene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT
	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 01:06	JT
0-Aylenc	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Sterene	BRL		0.10	5.0	ug/L	129176	1	05/10/2010 01:06	JT
stylene tort Butulbanzana	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Totrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Teluene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans 1.2 Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans 1,2 Dichloropropage	BRL		0.58	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans-1,3-Dichloro 2 hutane	BRL		3.1	10	ug/L	129176	1	05/10/2010 01:06	JT
Trichlereethene	2.0	J	0.23	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Tricklare fluoromathana	BRI.	-	0.31	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/10/2010 01:06	JT
vinyi chloride	73 8		0	60.1-127	%REC	129176	1	05/10/2010 01:06	JT
Surr: Dibromofluoromethene	110		0	79.6-126	%REC	129176	1	05/10/2010 01:06	JT
Surr: Toluene-d8	89.3		0	78-116	%REC	129176	1	05/10/2010 01:06	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client: SGS North America, Inc.									
Project Name: G1037-70 Lab ID: 1005450-021				Client S Collecti Matrix:	Client Sample II Collection Date: Matrix:		37-70 /2010 eous)-21)	
Analyses I	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS SW8	3260B			(SW503()B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129148	1	05/10/2010 17:35	Τι
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129148	1	05/10/2010 17:35	ΤL
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.1-Dichloroethane	BRL		0.29	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.1-Dichloroethene	BRL		0.30	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.1-Dichloropropene	BRL		0.49	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2.3-Trichloropropane	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2.4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2.4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2-Dibromoethane	BRL		0.29	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2-Dichloroethane	BRL		0.16	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2-Dichloropropane	BRL		0.48	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.3.5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.3-Dichloropropane	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	JT
2.2-Dichloropropane	BRL		0.38	5.0	ug/L	129148	1	05/10/2010 17:35	JT
2-Butanone	BRL		1.7	50	ug/L	129148	1	05/10/2010 17:35	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129148	1	05/10/2010 17:35	JT
2-Hexanone	BRL		0.61	10	ug/L	129148	1	05/10/2010 17:35	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129148	1	05/10/2010 17:35	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129148	1	05/10/2010 17:35	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129148	1	05/10/2010 17:35	JT
Acetone	21	J	5.0	50	ug/L	129148	1	05/10/2010 17:35	JT
Benzene	BRL		0.21	5.0	ug/L	129148	1	05/10/2010 17:35	TL
Bromobenzene	BRL		0.28	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromoform	BRL		0.70	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromomethane	BRL		0.49	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Chloroethane	BRL		0.39	10	ug/L	129148	1	05/10/2010 17:35	JT
Chloroform	BRL		0.30	5.0	ug/L	129148	1	05/10/2010 17:35	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Inc.

Sample/Cooler Receipt Checklist

start SBS		1005450 Work Order Number
	, ,	FIH/IN
Checklist completed by 5 Signature Date	16/10	
Carrier name: FedEx UPS Courier Client US	S Mail Othe	r
Shipping container/cooler in good condition?	Yes 🧹	No Not Present
Custody seals intact on shipping container/cooler?	Yes	No Not Present
Custody seals intact on sample bottles?	Yes	No Not Present
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes 🖌	No
Cooler #1 3.76 Cooler #2 Cooler #3	Cooler #4	Cooler#5 Cooler #6
Chain of custody present?	Yes _	No
Chain of custody signed when relinquished and received?	Yes _	No
Chain of custody agrees with sample labels?	Yes _	No
Samples in proper container/bottle?	Yes _	No
Sample containers intact?	Yes _	No _
Sufficient sample volume for indicated test?	Yes _	No
All samples received within holding time?	Yes _	No
Was TAT marked on the COC?	Yes	No
Proceed with Standard TAT as per project history?	Yes _	No Not Applicable
Water - VOA vials have zero headspace? No VOA vials s	ubmitted	Yes No
Water - pH acceptable upon receipt?	Yes _	No Not Applicable
Adjusted?	Che	ecked by
Sample Condition: Good Other(Explain) 4V	vo prok	un ving
(For diffusive samples or AlHA lead) Is a known blank inclu	ded? Yes	s No

See Case Narrative for resolution of the Non-Conformance.

* Samples do not have to comply with the given range for certain parameters.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklist

.

11-May-10	
Date:	

Analytical Environmental Services, Inc

Client: Project:	SGS North America, Inc. G1037-70 1005450				Dates Re	port	
1 ah Samole ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	TCL VOLATILE ORGANICS		05/07/2010	05/07/2010
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-002A	G1037-70-2	4/26/2010 1:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-002A	G1037-70-2	4/26/2010 1:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-003A	G1037-70-3	4/26/2010 2:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-003A	G1037-70-3	4/26/2010 2:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-004A	G1037-70-4	4/26/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-004A	G1037-70-4	4/26/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-005A	G1037-70-5	4/26/2010 2:45:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-005A	G1037-70-5	4/26/2010 2:45:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-006A	G1037-70-6	4/26/2010 4:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-006A	G1037-70-6	4/26/2010 4:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-007A	G1037-70-7	4/26/2010 5:10:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-007A	G1037-70-7	4/26/2010 5:10:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-008A	G1037-70-8	4/27/2010 12:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-008A	G1037-70-8	4/27/2010 12:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-009A	G1037-70-9	4/27/2010 11:20:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-010A	G1037-70-10	4/27/2010 12:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-011A	G1037-70-11	4/27/2010 4:05:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-012A	G1037-70-12	4/27/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-013A	G1037-70-13	4/27/2010 2:58:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-014A	G1037-70-14	4/27/2010 3:15:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-015A	G1037-70-15	4/27/2010 12:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-016A	G1037-70-16	4/27/2010 10:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-017A	G1037-70-17	4/27/2010 11:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-018A	G1037-70-18	4/27/2010 10:50:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010
1005450-019A	G1037-70-19	4/27/2010 9:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010
1005450-020A	G1037-70-20	4/27/2010 10:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010

SGS North America, Inc.
	Analysis Date 05/10/2010
keport	Prep Date 05/08/2010
Dates F	TCLP Date
	Test Name Volatile Organic Compounds by GC/MS
	Matrix Aqueous
	Collection Date 4/27/2010 12:00:00AM
SGS North America, Inc. G1037-70 1005450	Client Sample ID G1037 <i>-</i> 70-21
Client: Project: Lab Order:	Lab Sample ID 1005450-021A

Analytical Environmental Services, Inc

Date: 11-May-10

Analytical Environmental S	ervices, Inc								Date:	11-May-10	
Client: SGS North A Decise Name: G1037-70	merica, Inc.						ANALY	TICAL	QC SUMI	MARY F	LEPORT
Workorder: 1005450								Bat	chID: 1291	148	
Sample ID: MB-129148 SampleType: MBLK	Client ID: TestCode: Vol	atile Organic Compou	inds by GC/MS	SW8260B	Uni Bat	its: ug/L chID: 129148	Prep Anal	Date: ysis Date:)5/08/2010)5/08/2010	Run No: 1 Seq No:	[71295 1557472
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPI	D RPDI	imit Qual
1,1,1,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1.1.1-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1,2,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1,2-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,3-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,3-Trichloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,4-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,4-Trimethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dibromo-3-chloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1.2-Dibromoethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,3,5-Trimethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,3-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,3-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,4-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
2,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
2-Butanone	BRL	50	0	0	0	0	0	0	0	0	
2-Chlorotoluene	BRL	5.0	0	0	0	0	0	0	0	0	_
2-Hexanone	BRL	10	0	0	0	0	0	0	0	0	
4-Chlorotoluene	BRL	5.0	0	0	0	0	0	0	0	U	
4-lsopropyltoluene	BRL	5.0	0	0	0	0	0	0	0	0	
4-Methyl-2-pentanone	BRL	10	0	0	0	0	0	0	0	0	-
Qualifiers: > Greater than Result v	value		< Les	than Result value			B	Inalyte detected i	n the associated meth	od blank	
BRL Below reporting limit	ſ		E Estir	nated (value above quantit	ation range)		H	Iolding times for	preparation or analys	is exceeded	
J Estimated value det	ected below Reporting Lim	it	N Ana	lyte not NELAC certified			R	CPD outside limi	s due to matrix		
Rpt Lim Reporting Limit			S Spik	e Recovery outside limits	due to matrix						

Page 51 of 59

Client: SGS North /	America, Inc.						ANALY	TICAL	QC SUMN	MARY REPO	RT
Project Name: G1037-70 Workorder: 1005450								Bat	chID: 1291	48	
Sample ID: MB-129148	Client ID:				Uni	ts: ug/L	Prep	Date: 0	5/08/2010	Run No: 171295	
SampleTypc: MBLK	TestCode: Vola	ıtile Organic Compou	inds by GC/MS	SW8260B	Bat	chID: 129148	Anal	lysis Date: 0	5/08/2010	Seq No: 3557472	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref \	'al %RPL	RPD Limit C	Jual
Acetone	BRL	50	0	0	0	0	0	0	0	0	
Benzene	BRL	5.0	0	0	0	0	0	0	0	0	
Bromobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Bromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Bromoform	BRL	5.0	0	0	0	0	0	0	0	0	
Bromomethane	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon disulfide	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0	
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Chloroethane	BRL	10	0	0	0	0	0	0	0	0	
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0	
Chloromethane	BRL	10	0	0	0	0	0	0	0	0	
cis-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
cis-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Dibromomethane	BRL	5.0	0	0	0	0	0	0	0	0	
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0	
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Hexachlorobutadiene	4.020	5.0	0	0	0	0	0	0	0	0	-
lodomethane	BRL	10	0	0	0	0	0	0	0	0	
Isopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
m,p-Xylene	BRL	10	0	0	0	0	0	0	0	0	
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	0	
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0	
n-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
n-Propylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Contraction Contraction Description			 Less 	than Result value			æ	Analyte detected it	the associated metho	od blank	
Qualifiers: > Orealer utain Account	r value nit		E Estin	nated (value above quanti	tation range)		Н	Holding times for	oreparation or analysi	is exceeded	
J Estimated value de	etected below Reporting Lim	ii	N Anal	yte not NELAC certified			R	RPD outside limit	s due to matrix		
Rot I im Reporting I imit			S Spik	e Recovery outside limits	due to matrix						
www-Sunnday mintady											

Date: 11-May-10

Analytical Environmental Services, Inc

Page 52 of 59

Analytical Environmental S	ervices, Inc								Date:	11-May-10	
Client: SGS North A	merica, Inc.						ANALY	TICAL QC	C SUMN	1ARY REPORT	
Project Name: G103/-70 Workorder: 1005450								BatchI	D: 1291	8	
Sample ID: MB-129148 SampleType: MBLK	Client ID: TestCode: V	olatile Organic Compot	inds by GC/MS S	W8260B	Unit Bate	ts: ug/L chID: 129148	Prep Anal	Date: 05/0 ysis Date: 05/0	8/2010 8/2010	Run No: 171295 Seq No: 3557472	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Nanhthalene	BRL	5.0	0	0	0	0	0	0	0	0	
o-Xvlene	BRL	5.0	0	0	0	0	0	0	0	0	
sec-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Styrene	BRL	5.0	0	0	0	0	0	0	0	0	
tert-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Tetrachloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
Toluenc	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,4-Dichloro-2-butene	BRL	10	0	0	0	0	0	0	0	0	
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Vinyl chloride	BRL	2.0	0	0	0	0	0	0	0	0	
Surr: 4-Bromofluorobenzene	46.64	0	50	0	93.3	60.1	127	0	0	0	
Surr: Dibromofluoromethane	55.60	0	50	0	111	79.6	126	0	0	0	
Surr: Toluene-d8	45.61	0	50	0	91.2	78	116	0	0	0	
Sample ID: MB-129148	Client ID:				Uni	ts: ug/L	Prep	Date: 05/0	8/2010	Run No: 171416	
SampleType: MBLK	TestCode: V	/olatile Organic Compo	unds by GC/MS	SW8260B	Bat	chID: 129148	Ana	lysis Date: 05/1	0/2010	Seq No: 3560411	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Isopropyl ether	BRL	10	0	0	0	0	0	0	0	0	
Surr: 4-Bromofluorobenzene	44.49	0	50	0	68	60.1	127	0	0	0	
Surr: Dibromofluoromethane	60.31	0	50	0	121	79.6	126	0	0	0	
Surr: Toluene-d8	51.02	0	50	0	102	78	116	0	0	0	
Qualifiers: > Greater than Result v	value		< Les	than Result value			æ	Analyte detected in the	associated methor	d blank	1
BRL Below reporting limi	ų		E Estim	ated (value above quantit	ation range)		H	Holding times for prepa	ration or analysis	exceeded	
J Estimated value det	ected below Reporting L	imit	N Anal	yte not NELAC certified			R	RPD outside limits due	to matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits d	lue to matrix						

Page 52 of 60

Page 53 of 59

Analytical Environm	nental Se	rvices, Inc								Date:	l 1-May-10	
Client: SGS	North Am	lerica, Inc.						ANALY	TICAL QC	C SUMM	ARY REPORT	
Project Name: G10 Workorder: 100:	37-70 5450								BatchI	D: 12914	8	
Sample ID: LCS-12914 SampleType: LCS		Client ID: TestCode: Vo	latile Organic Compou	nds by GC/MS S	W8260B	Uni Bat	ts: ug/L chID: 129148	Prep Analy	Date: 05/0 ysis Date: 05/0	8/2010	Run No: 171295 Seq No: 3557470	·
Analyte		Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1.1-Dichloroethenc		48.61	5.0	50	0	97.2	61.4	146	0	0	0	
Benzene		46.97	5.0	50	0	93.9	72.8	131	0	0	0	
Chlorobenzene		45.94	5.0	50	0	91.9	76	123	0	0	0	
Toluene		48.78	5.0	50	0	97.6	74.7	128	0	0	0	
Trichloroethene		56.98	5.0	50	0	114	74.4	130	0	0	0	
Surr: 4-Bromofluoroben	zene	52.49	0	50	0	105	60.1	127	0	0	0	
Surr: Dibromofluoromet	hane	57.19	0	50	0	114	79.6	126	0	0	0	
Surr: Toluene-d8		53.11	0	50	0	106	78	116	0	0	0	
Comple ID: 1005016-01	24 MS	Client ID:				Uni	its: ug/L	Prep	Date: 05/0	8/2010	Run No: 171295	
SampleType: MS		TestCode: Vo	olatile Organic Compot	ands by GC/MS 2	SW8260B	Bat	chID: 129148	Anal	ysis Date: 05/0	8/2010	Seq No: 3557631	
Analyte		Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1 1-Dichloroethene		7676	500	5000	0	154	48.8	172	0	0	0	
Renzene		5035	500	5000	0	101	64.5	143	0	0	0	
Chlorohenzene		4573	500	5000	0	91.5	74.5	129	0	0	0	
Toluene		4967	500	5000	0	99.3	62	145	0	0	0	
Trichloroethene		5997	500	5000	829.0	103	70.3	140	0	0	0	
Surr: 4-Bromofluoroben	Izene	4577	0	5000	0	91.5	60.1	127	0	0	0	
Surr: Dibromofluorome	thane	5443	0	5000	0	109	79.6	126	0	0	0	
Surr: Toluene-d8		4660	0	5000	0	93.2	78	116	0	0	0	[
Samule ID: 1005016-0	07AMSD	Client ID:				Un	its: ug/L	Prep	Date: 05/(08/2010	Run No: 171295	
SampleType: MSD		TestCode: V	olatile Organic Compo	unds by GC/MS	SW8260B	Ba	tchID: 129148	Ana	lysis Date: 05/0	08/2010	Seq No: 3557632	
Analyte		Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1.1-Dichloroethene		7611	500	5000	0	152	48.8	172	7676	0.85	21.6	
Benzene		4828	500	5000	0	96.6	64.5	143	5035	4.2	18.3	
Ouslifiers: > Greater	than Result va	lue		< Less	than Result value			E	Analyte detected in the	associated method	blank	
BRL Below 1	reporting limit			E Estim	iated (value above quantit	ation range)		Н	Holding times for prepa	ration or analysis (sxceeded	
J Estima	tted value detec	ted below Reporting Li	imit	N Anal	yte not NELAC certified			R	RPD outside limits due	to matrix		
Rpt Lim Report	ing Limit			S Spike	Recovery outside limits (due to matrix						

Page 53 of 60

Page 54 of 59

l	RT			hual							
1-May-10	ARY REPO	~	Run No: 171295 Req No: 3557632	RPD Limit C	19.2	21.2	20.3	0	0	0	
Date: 1	SUMM	: 129148	2010 F	%RPD	4.41	1.87	0.82	0	0	0	
	TICAL QC	BatchID	Date: 05/08/ ysis Date: 05/08/	RPD Ref Val	4573	4967	5997	4577	5443	4660	
	ANALY		Prep	High Limit	129	145	140	127	126	116	
			ts: ug/L chID: 129148	Low Limit	74.5	62	70.3	60.1	79.6	78	
			Uni Bate	%REC	92.6	97.5	102	92.9	110	92.2	
			W8260B	SPK Ref Val	0	0	829.0	0	0	0	
			nds by GC/MS S	SPK value	5000	5000	5000	5000	5000	2000	
			olatile Organic Compou	RPT Limit	500	500	500	0.	0	0	
rvices, Inc	erica, Inc.		Client ID: TestCode: V	Result	4779	4875	5948	4646	5523	4609	
ironmental Sei	SGS North Am	1005450	5016-007AMSD 1SD					lorobenzene	Joromethane	~	
Analytical Env	Client:	Project Name: Workorder:	Sample ID: 100 SampleType: N	Analyte	Chlorobenzene	Toluene	Trichloroethene	Surr: 4-Bromoflt	Surr: Dibromofly	Surr: Toluene-d{	

Holding times for preparation or analysis exceeded Analyte detected in the associated method blank
 H Holding times for preparation or analysis exceede
 R RPD outside limits due to matrix Estimated (value above quantitation range) Spike Recovery outside limits due to matrix Analyte not NELAC certified Less than Result value ш z s v

> Below reporting limit BRL

Greater than Result value

٨

Qualifiers:

Estimated value detected below Reporting Limit -

Rpt Lim Reporting Limit

Page 55 of 59

SGS North America, Inc.

Client: SGS North Ar	merica, Inc.						ANALY	TICAL	QC SUMF	MARY I	REPORT
Project Name: G1037-70 Workorder: 1005450								Bat	chID: 1291	176	
Sample ID: MB-129176 SampleType: MBLK	Client ID: TcstCode: Vol	atile Organic Compo	ands by GC/MS S	W8260B	Uni Bat	ts: ug/L chID: 129176	Prep Anal	Date: 0 ysis Date: 0	5/09/2010 5/09/2010	Run No: Seq No:	171307 3557837
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	al %RPI	O RPD	Limit Qual
1.1.1.2-Tetrachlorocthanc	BRL	5.0	0	0	0	0	0	0	0	0	
1,1,1-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	U	
1,1,2,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	U	
1,1,2-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	U	
1, 1-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0)	_
1,1-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	_
1,2,3-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,3-Trichloropropane	BRL	5.0	0	0	0	0	0	0	0	U	•
1,2,4-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	U	
1,2,4-Trimethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dibromo-3-chloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dibromoethane	BRL	5.0	0	0	0	0	0	0	0	•	
1,2-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	Ŭ	_
1,2-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	Ŭ	0
1,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	•	0
1,3,5-Trimethylbenzene	BRL	5.0	0	0	0	0	0	0	0	Ū	0
1,3-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	-	0
1,3-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	-	0
1,4-Dichlorobenzenc	BRL	5.0	0	0	0	0	0	0	0	-	0
2,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	-	0
2-Butanone	BRL	50	0	0	0	0	0	0	0	-	0
2-Chlorotoluene	BRL	5.0	0	0	0	0	0	0	0	-	0
2-Hexanone	BRL	10	0	0	0	0	0	0	0	-	0
4-Chlorotoluene	BRL	5.0	0	0	0	0	0	0	0	-	0
4-lsopropyltoluene	BRL	5.0	0	0	0	0	0	0	0	-	0
4-Methyl-2-pentanone	BRL	10	0	0	0	0	0	0	0	-	0
							-		the second store	d black	
Qualifiers: > Greater than Result v	alue		 Less 	than Result value			a :	Analyte detected in	The associated highly	OU DIALLY	
BRL Below reporting limit			E Estin	ated (value above quantit	ttion range)		Ξ	Holding times for p	reparation of analysi	is exceeded	
J Estimated value dete	scted below Reporting Lim	it	N Anal	rte not NELAC certified			2	RPD outside limits	due to matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits d	ue to matrix						

Date: 11-May-10

Analytical Environmental Services, Inc

Page 56 of 59

Analytical Environmental Se	rvices, Inc								Date:	11-May-10	
Client: SGS North Am	nerica, Inc.						ANALY	TICAL	QC SUMA	MARY REPOR	r
Project Name: G1037-70 Workorder: 1005450								Bat	chID: 1291	76	
Sample ID: MB-129176 SampleType: MBLK	Client ID: TestCode: Vol	atile Organic Compou	inds by GC/MS S	W8260B	Uni Bat	tts: ug/L chID: 129176	Prep	Date: (lysis Date: (5/09/2010 5/09/2010	Run No: 171307 Seq No: 3557837	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPL	RPD Limit Qua	
Aretone	BRL	50	0	0	0	0	0	0	0	0	
Renzene	BRL	5.0	0	0	0	0	0	0	0	0	
Bromobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Bromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Bromoform	BRL	5.0	0	0	0	0	0	0	0	0	
Bromonthanc	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon disulfide	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0	
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Chloroethane	BRL	10	0	0	0	0	0	0	0	0 0	
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0 0	
Chloromethane	BRL	10	0	0	0	0	0	0	0	0	
cis-1.2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
cis-1.3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Dibromomethane	BRL	5.0	0	0	0	0	0	0	0	0	
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0	
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Hexachlorobutadiene	BRL	5.0	0	0	0	0	0	0	0	0	
Iodomethane	BRL	10	0	0	0	0	0	0	0	0	
Isopropy1 ether	BRL	10	0	0	0	0	0	0	0	0 0	
lsopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
m,p-Xylene	BRL	10	0	0	0	0	0	0	0	0 0	
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	0	
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0	
n-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	D	
			 Less 	than Result value			В	Analyte detected i	n the associated meth	od blank	
Qualifiers: > Oreater utain resource variation of the second seco	201		E Estin	nated (value above quantit	tation range)		Н	Holding times for	preparation or analys	is exceeded	
J Estimated value detec	cted below Reporting Lir	nit	N Anal	yte not NELAC certified			R	RPD outside limi	is due to matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits	due to matrix						

Date: 11-May-10

Page 57 of 59

Analytical Environmental Se	ervices, Inc								Date:	11-May-10	
Client: SGS North An	nerica, Inc.						ANALY	TICAL QC	C SUMM	IARY REPORT	
Project Name: G1037-70 Workorder: 1005450								Batchl	D: 12917	9	
Sample ID: MB-129176	Client ID:	Zalatile Oreanic Comnou	nds hv GC/MS_5	W8260B	Unit	s: ug/L hID: 129176	Prep	Date: 05/0 /sis Date: 05/0	9/2010 9/2010	Run No: 171307 Seq No: 3557837	
Sample Lype: MBLK	I estcode:									lono tini I ada	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val		KPD LIMIT Quai	
n-Propylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Naphthalene	BRL	5.0	0	0	0	0	0	0	0	0	
o-Xylene	BRL	5.0	0	0	0	0	0	0	0	0	
sec-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Styrene	BRL	5.0	0	0	0	0	0	0	0	0	
tert-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Tetrachlorocthene	BRL	5.0	0	0	0	0	0	0	0	0	
Toluene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1.4-Dichloro-2-butene	BRL	10	0	0	0	0	0	0	0	0	
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Vinvl chloride	BRL	2.0	0	0	0	0	0	0	0	0	
Surr: 4-Bromofluorobenzene	40.12	0	50	0	80.2	60.1	127	0	0	0	
Surr: Dibromofluoromethane	51.80	0	50	0	104	79.6	126	0	0	0	
Surr: Toluene-d8	42.58	0	50	0	85.2	78	116	0	0	0	
Sample ID: LCS-129176 SampleType: LCS	Client 1D: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Bat	ts: ug/L chID: 129176	Prep	Date: 05/1 ysis Date: 05/1	09/2010 09/2010	Run No: 171307 Seq No: 3557846	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1 1_Dichloroothene	50.85	5.0	50	0	102	61.4	146	0	0	0	
Renzene	57.35	5.0	50	0	115	72.8	131	0	0	0	
Chlorohenzene	52.80	5.0	50	0	106	76	123	0	0	0	
Toluene	56.31	5.0	50	0	113	74.7	128	0	0	0	
Trichloroethene	57.09	5.0	50	0	114	74.4	130	0	0	0	
Surr: 4-Bromofluorobenzene	53.46	0	50	0	107	60.1	127	0	0	0	1
Oualifiers: > Greater than Result va	alue		< Les	than Result value			B	Analyte detected in the	associated methoo	l blank	
BRL Below reporting limit			E Estir	nated (value above quantit	ation range)		H	Holding times for prepa	aration or analysis	exceeded	
J Estimated value deter	scted below Reporting	Limit	N Ana	tyte not NELAC certified			R	PD outside limits due	e to matrix		
Rpt Lim Reporting Limit			S Spik	e Recovery outside limits	due to matrix						

Page 57 of 60

Page 58 of 59

kpt Lim keporting L

.

Analytical Environmental Se	rvices, Inc								Date:	11-May-10	
Client: SGS North Am	terica, Inc.						ANALY	TICAL Q	C SUMM	IARY REPORT	
Project Name: G1037-70 Workorder: 1005450		·						Batch	ID: 12917	9	
Sample ID: LCS-129176 SampleType: LCS	Client ID: TestCode:	Volatile Organic Compou	inds by GC/MS S	W8260B	Uni	s: ug/L chID: 129176	Prep Anal	Date: 05/1 ysis Date: 05/1	09/2010 09/2010	Run No: 171307 Seq No: 3557846	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Surr: Dibromofluoromethane	50.04	0	50	0	100	79.6	126	0	0	0	
Surr: Toluene-d8	53.41	0	50	0	107	78	116	0	0	0	
Sample ID: 1005450-009AMS	Client ID:	G1037-70-9			Uni	ts: ug/L	Prep	Date: 05/	09/2010	Run No: 171307	
SampleType: MS	TestCode:	Volatile Organic Compou	inds by GC/MS	W8260B	Bat	chID: 129176	Anal	ysis Date: 05/	09/2010	Seq No: 3557847	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1.1-Dichloroethene	54.92	5.0	50	0	110	48.8	172	0	0	0	
Benzene	57.53	5.0	50	0	115	64.5	143	0	0	0	
Chlorobenzene	53.57	5.0	50	0	107	74.5	129	0	0	0	
Toluene	58.44	5.0	50	0	117	62	145	0	0	0	
Trichloroethene	52.73	5.0	50	0	105	70.3	140	0	0	0	
Surr: 4-Bromofluorobenzene	52.35	0	50	0	105	60.1	127	0	0	0	
Surr: Dibromofluoromethane	50.88	0	50	0	102	79.6	126	0	0	0	
Surr: Toluene-d8	52.23	0	50	0	104	78	116	0	0	0	
Samule ID: 1005450-009AMSD	Client ID:	G1037-70-9			Curi	ts: ug/L	Prep	Date: 05/	01/2010	Run No: 171307	
SampleType: MSD	TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Bat	chID: 129176	Ana	lysis Date: 05/	06/2010	Seq No: 3557848	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	RPD	RPD Limit Qual	
1.1-Dichlorocthene	51.41	5.0	50	0	103	48.8	172	54.92	6.6	21.6	
Benzene	54.89	5.0	50	0	110	64.5	143	57.53	4.7	18.3	
Chlorobenzene	53.39	5.0	50	0	107	74.5	129	53.57	0.337	19.2	
Toluene	54.12	5.0	50	0	108	62	145	58.44	7.68	21.2	
Trichloroethene	51.43	5.0	50	0	103	70.3	140	52.73	2.5	20.3	
Surr: 4-Bromofluorobenzene	52.86	0	50	0	106	60.1	127	52.35	0	0	
Surr: Dibromofluoromethane	48.36	0	50	0	96.7	79.6	126	50.88	0	0	
Surr: Toluene-d8	48.82	0	50	0	97.6	78	116	52.23	0	0	
Qualifiers: > Greater than Result val	lue		< Less	than Result value	į		B	Analyte detected in the	associated method	blank	
BRL Below reporting limit			E Estin	iated (value above quantit	ttion range)		н	Holding times for prep	aration or analysis	exceeded	
J Estimated value detect	ted below Reporting	Limit	N Anal	yte not NELAC certified			R	RPD outside limits du	e to matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits d	ue to matrix						

Page 58 of 60

Page 59 of 59

S
C
E

SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • Now Jorsey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

(-)-	CLIENT: RECOM					SGS Refe	rence #:	C	-(037	oL.		page) 0	0	
	CONTACT: MATT BOGAN	HONE PHONE	: NO: 919	872-66	8	+	Drawn	vatives		-					
	PROJECT: NCOO T-PICT	SKARLO SITE/PI	NSID#: "34	1613.3	5.0	+ ² # (MPLE Usod YPE Analv	4		+					T
	REPORTS TO:	EMAIL:				ہ ں	C= Requ		\times	_	_	_	\checkmark	_	
	MATT BLENNAN	MATTH	EN. BRENNI	AN CAELON	n. com	 z ⊢ ·	G ^G	28	<					_	
(invoice to: Chris Peoples	QUOTE P.O. #:	NCOUT WB	5.# 346	13,3.13	а – Z Ш	Mi= Multi ementai	(.) (.)		>		X			
	LAB NO. SAMPL	LE IDENTIFICATION	DATE	TIME	MATRIX/ MATRIX CODE	R N S	mptes		/ /	\langle				REMARKS/ LOC ID	9
	MWXH 1	2-	cilaz/h	1350	EW	~	5								GΫ
	2 48 DM		01/72/1	1330	(FN	5	10)								Nqr
	4 4 SMW	5	4/26/10	1435	6-N	3 ((v) . h			\geq					thj/
P	NW & H & Wh	0-4 <u>6</u>	ci/nz/h	1550	61	3 6	(1)								٩m
' ح	5 HSPW	2.	01/12/1	Shhi	6 N	30		00	\rightarrow	_					eric
~	1, 485W-C	0	c1/92/h	1635	М	3 6	(Y					/			a, li
\sim	V EBOI-	- 04260 -	71917	015]	ר	36		~				4			nc.
	(DUP-1		olke/H	1	GU	3 (1 ' I 1 5	~							
	9 48 DW	-16	4/1,10	07H	こう	3	ر ب د ا	2			_				
	068-0	2	el/er/h	1230	ļ	ر ک		3 /		-{					Τ
	Collected/Relinquished By:(1) Date	Time	Received E	3y:			DD Project?	YES	(D)	Special	Delivorablo F	Requirement	ts:	
	N NO	14/20	010	A at	A ser	Ausa	ŭ A	oler ID							
	Relinquished BY: (2)	Date	, Time	Received E			Y R	equested Tur	naround Ti	ne and-or \$	Special Instr	uctions:	-		~
_	North South	12 4/28/	1406					Noice 1	2 2 2	vrìs Prò	ples, N	IC DOT MU	aterials	ANT LIRA	13
	Relinquished By: (3)	Date	Time	Received E	NNA N			Nit, 180	1 blue F	1	5 June 1	n, NCCTU	346	13. 5. 73	Ļ
`)	Ullally C	(o.:00	/ lelin	Cora	J	, Sí	imples Rece	ived Cold?		o Z	Chain of 0	Custody Sea	al: (Circte)	
	Relinquished By: (4)	Date	Time	Received F	For Laborato	ry By:	<u> </u>	mperature°C	Cooler 20		8	INTACT	BROKEN	ABSENT	
_ 30	200 W. Potter Drivo Anchorage, J 2550 Business Drive Wilmington, I	AK 99518 Tel: (907) 562-2 NC 28405 Tel: (910) 350-	2343 Fax: (907) 56 1903 Fax: (910) 3	51-5301 50-1557			http://w	ww.sgs.com/te	erms and con	ditions.htm				White - Retained I Pink - Retained by	by Lab y Client

	_
Ű	
•	

SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

CLIENT: A.C.S.M. CONTACT: M.C.M.C.M.C.M. B.C.S.M. PROJECT: M.C.M.C.M. B.C. REPORTS TO: M.M. H. M.C.M.C. P.H. M.M. H. M.M. M. C.L. N.S. P. LAB NO. LAB NO. SAMPL I. H. B.M.M. C.L. N.S. P. LAB NU. C.L. N.S. P. M.M.M. B. H. M.M.M. C.M. S. M.M.M. C.M. M.M.M. C.M. S. M.M.M. S. M. M. M. M. M. M.M. S. M. M.M.M. S. M. M. M. M. M. M. M.M.M. S. M. M.M.M. S. M.	PHONE	19: 519 3 SID#: 34/6/ SID#: 34/6/ SID#: 34/6/ 1/2/10 1/2/10 1/2/00 1/00 1/00	22.660 2.1.660 2.1.660 2.1.660 2.1.660 2.1.660 2.1.660 1.1.55		GGS Reference GGS RE	H: ClOS Presonatives HL Analysis Required X X X X X X X X X X Z DOD Project? Cooler ID Requested Turman	The and of the second s	2) 2) Special Tosti	Page Page Deliverable Requi	of O Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID	SGS North America, Inc.
Relinquished by: (3)	4/29//(1000	Revenues Ly	Man	$\left\langle \right\rangle$	Samples Received	Cold? (YE&	o v	Chain of Custo	dy Seal: (Circle)	
Relinquished By: (4)	Date	Time	Received Fo	r Laboratory	By:	Temperature °C:	Geolegy I	ро –	INTACT BR	OKEN ABSEN	

□ 200 W. Potter Drive **Anchorage, AK 99518** Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive **Wilmington, NC 28405** Tel: (910) 350-1903 Fax: (910) 350-1557

White - Retained by Lab Pink - Retained by Client

http://www.sgs.com/terms and conditions.htm

Matt Brennan AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-82

Client Project: NCDOT Pittsboro #6-48

Dear Matt Brennan,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

6.2010 $\frac{M}{Date}$ **Project Manager** Barbara Hager

SGS North America Inc. | Environmental Division 5500 Business Dr., Wilmington, NC 28405 t (910) 350-1903 f (910) 350-1557 www.us.sgs.com

List of Reporting Abbreviations And Data Qualifiers

- B = Compound also detected in batch blank
- BQL = Below Quantification Limit (RL or MDL)

DF = Dilution Factor

- Dup = Duplicate
- D = Detected, but RPD is > 40% between results in dual column method.
- E = Estimated concentration, exceeds calibration range.
- J = Estimated concentration, below calibration range and above MDL
- LCS(D) = Laboratory Control Spike (Duplicate)
- MDL = Method Detection Limit
- MS(D) = Matrix Spike (Duplicate)
- PQL = Practical Quantitation Limit
- RL/CL = Reporting Limit / Control Limit
- RPD = Relative Percent Difference
- mg/kg = milligram per kilogram, ppm, parts per million
- ug/kg = micrograms per kilogram, ppb, parts per billion
- mg/L = milligram per liter, ppm, parts per million
- ug/L = micrograms per liter, ppb, parts per billion
- % Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

MI34.021808.4

Client Sample ID: 48MW17 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-1A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 11:30 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.0250	1	7/13/2010
Benzene	BQL	0.00100	1	7/13/2010
Bromobenzene	BQL	0.00100	1	7/13/2010
Bromochloromethane	BQL	0.00100	1	7/13/2010
Bromodichloromethane	BQL	0.00100	1	7/13/2010
Bromoform	BQL	0.00100	1	7/13/2010
Bromomethane	BQL	0.00100	1	7/13/2010
2-Butanone	BQL	0.0250	1	7/13/2010
n-Butylbenzene	BQL	0.00100	1	7/13/2010
sec-Butylbenzene	BQL	0.00100	1	7/13/2010
tert-Butylbenzene	BQL	0.00100	1	7/13/2010
Carbon disulfide	BQL	0.00100	. 1	7/13/2010
Carbon tetrachloride	BQL	0.00100	1	7/13/2010
Chlorobenzene	BQL	0.00100	. 1	7/13/2010
Chloroethane	BQL	0.00100	1	7/13/2010
Chloroform	BQL	0.00100	1	7/13/2010
Chloromethane	BQL	0.00100	1	7/13/2010
2-Chlorotoluene	BQL	0.00100	1	7/13/2010
4-Chlorotoluene	BQL	0.00100	1	7/13/2010
Dibromochloromethane	BQL	0.00100	1	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.00500	1	7/13/2010
Dibromomethane	BQL	0.00100	1	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.00100	1	7/13/2010
1,2-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,3-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,4-Dichlorobenzene	BQL	0.00100	1	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.00500	1	7/13/2010
1,1-Dichloroethane	BQL	0.00100	1	7/13/2010
1,1-Dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloroethane	BQL	0.00100	1	7/13/2010
cis-1,2-Dichloroethene	BQL	0.00100	1	7/13/2010
trans-1,2-dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,3-Dichloropropane	BQL	0.00100	1	7/13/2010
2,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,1-Dichloropropene	BQL	0.00100	1	7/13/2010
cis-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
trans-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
Dichlorodifluoromethane	BQL	0.00500	1	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.00100	1	7/13/2010
Ethylbenzene	BQL	0.00100	1	7/13/2010
Hexachlorobutadiene	BQL	0.00100	1	7/13/2010
2-Hexanone	BQL	0.00500	1	7/13/2010
lodomethane	BQL	0.00100	1	7/13/2010
Isopropylbenzene	BQL	0.00100	1	7/13/2010

GCMS

Client Sample ID: 48MW17 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-1A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 11:30 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.00100		1	7/13/2010
Methylene chloride	BQL	0.00500		1	7/13/2010
4-Methyl-2-pentanone	BQL	0.00500		1	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00100		1	7/13/2010
Naphthalene	BQL	0.00100		1	7/13/2010
n-Propyl benzene	BQL	0.00100		1	7/13/2010
Styrene	BQL	0.00100		1	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
Tetrachloroethene	BQL	0.00100		1	7/13/2010
Toluene	BQL	0.00100		1	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.00100		1	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.00100		1	7/13/2010
Trichloroethene	BQL	0.00100		1	7/13/2010
1,1,1-Trichloroethane	BQL	0.00100		1	7/13/2010
1,1,2-Trichloroethane	BQL	0.00100		1	7/13/2010
Trichlorofluoromethane	BQL	0.00100		1	7/13/2010
1,2,3-Trichloropropane	BQL	0.00100		1	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.00100		1	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.00100		1	7/13/2010
Vinyl chloride	BQL	0.00100		1	7/13/2010
m-,p-Xylene	BQL	0.00200		. 1	7/13/2010
o-Xylene	BQL	0.00100		1	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

Added	Result	Recovered	
0.03	0.0293	98	
0.03	0.0301	101	
0.03	0.03	100	
	Added 0.03 0.03 0.03	AddedResult0.030.02930.030.03010.030.03	AddedResultRecovered0.030.0293980.030.03011010.030.03100

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: 0V0

Reviewed By: ______

Client Sample ID: 48MW-16 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-2A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 12:35 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	2.00	80	7/13/2010
Benzene	BQL	0.0800	80	7/13/2010
Bromobenzene	BQL	0.0800	80	7/13/2010
Bromochloromethane	BQL	0.0800	80	7/13/2010
Bromodichloromethane	BQL	0.0800	80	7/13/2010
Bromoform	BQL	0.0800	80	7/13/2010
Bromomethane	BQL	0.0800	80	7/13/2010
2-Butanone	BQL	2.00	80	7/13/2010
n-Butylbenzene	BQL	0.0800	80	7/13/2010
sec-Butylbenzene	BQL	0.0800	80	7/13/2010
tert-Butylbenzene	BQL	0.0800	80	7/13/2010
Carbon disulfide	BQL	0.0800	80	7/13/2010
Carbon tetrachloride	BQL	0.0800	80	7/13/2010
Chlorobenzene	BQL	0.0800	80	7/13/2010
Chloroethane	BQL	0.0800	80	7/13/2010
Chloroform	BQL	0.0800	80	7/13/2010
Chloromethane	BQL	0.0800	80	7/13/2010
2-Chlorotoluene	BQL	0.0800	80	7/13/2010
4-Chlorotoluene	BQL	0.0800	80	7/13/2010
Dibromochloromethane	BQL	0.0800	80	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.400	80	7/13/2010
Dibromomethane	BQL	0.0800	80	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0800	80	7/13/2010
1,2-Dichlorobenzene	BQL	0.0800	80	7/13/2010
1,3-Dichlorobenzene	BQL	0.0800	80	7/13/2010
1,4-Dichlorobenzene	BQL	0.0800	80	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.400	80	7/13/2010
1,1-Dichloroethane	BQL	0.0800	80	7/13/2010
1,1-Dichloroethene	0.0848	0.0800	80	7/13/2010
1,2-Dichloroethane	BQL	0.0800	80	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0800	80	7/13/2010
trans-1,2-dichloroethene	BQL	0.0800	80	7/13/2010
1,2-Dichloropropane	BQL	0.0800	80	7/13/2010
1,3-Dichloropropane	BQL	0.0800	80	7/13/2010
2,2-Dichloropropane	BQL	0.0800	80	7/13/2010
1,1-Dichloropropene	BQL	0.0800	80	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0800	80	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0800	80	7/13/2010
Dichlorodifluoromethane	BQL	0.400	80	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0800	80	7/13/2010
Ethylbenzene	BQL	0.0800	80	7/13/2010
Hexachlorobutadiene	BQL	0.0800	80	7/13/2010
2-Hexanone	BQL	0.400	80	7/13/2010
lodomethane	BQL	0.0800	80	7/13/2010
Isopropylbenzene	BQL	0.0800	80	7/13/2010

GCMS

Client Sample ID: 48MW-16 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-2A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 12:35 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0800		80	7/13/2010
Methylene chloride	BQL	0.400		80	7/13/2010
4-Methyl-2-pentanone	BQL	0.400		80	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0800		80	7/13/2010
Naphthalene	BQL	0.0800		80	7/13/2010
n-Propyl benzene	BQL	0.0800		80	7/13/2010
Styrene	BQL	0.0800		80	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0800		80	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0800		80	7/13/2010
Tetrachloroethene	BQL	0.0800		80	7/13/2010
Toluene	BQL	0.0800		80	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0800		80	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0800		80	7/13/2010
Trichloroethene	1.06	0.0800		80	7/13/2010
1,1,1-Trichloroethane	BQL	0.0800		80	7/13/2010
1,1,2-Trichloroethane	BQL	0.0800		80	7/13/2010
Trichlorofluoromethane	BQL	0.0800		80	7/13/2010
1,2,3-Trichloropropane	BQL	0.0800		80	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0800		80	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0800		80	7/13/2010
Vinyl chloride	BQL	0.0800		80	7/13/2010
m-,p-Xylene	BQL	0.160		80	7/13/2010
o-Xylene	BQL	0.0800		80	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0301	100	
Toluene-d8		0.03	0.03	100	
4-Bromofluorobenzene		0.03	0.0303	101	

Comments:

Flags:

BQL = Below Quantitation Limits.

Reviewed By:

Client Sample ID: 48DW5 (60 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-3A Lab Project ID: G1037-82

Analyzed By: DVO Date Collected: 7/9/2010 13:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analvzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL	0.500	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20	7/13/2010
sec-Butylbenzene	BQL	0.0200	20	7/13/2010
tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform	BQL	0.0200	20	7/13/2010
Chloromethane	BQL	0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20	7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0302	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20	7/13/2010
1,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,3-Dichloropropane	BQL	0.0200	20	7/13/2010
2,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
Ethylbenzene	BQL	0.0200	20	7/13/2010
Hexachlorobutadiene	BQL	0.0200	20	7/13/2010
2-Hexanone	BQL	0.100	20	7/13/2010
lodomethane	BQL	0.0200	20	7/13/2010
Isopropylbenzene	BQL	0.0200	20	7/13/2010

Client Sample ID: 48DW5 (60 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-3A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.313	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0299	100	
Toluene-d8		0.03	0.0309	103	
4-Bromofluorobenzene		0.03	0.0301	100	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _______

Reviewed By:

Client Sample ID: 48DW5 (80 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-4A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:10 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL	0.500	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20	7/13/2010
sec-Butylbenzene	BQL	0.0200	20	7/13/2010
tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform	BQL	0.0200	20	7/13/2010
Chloromethane	BQL	0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20	7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0274	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20	7/13/2010
1,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,3-Dichloropropane	BQL	0.0200	20	7/13/2010
2,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Dilsopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
	BQL	0.0200	20	7/13/2010
Hexachiorobutadiene	BQL	0.0200	20	7/13/2010
	BQL	0.100	20	7/13/2010
Iodomethane	BQL	0.0200	20	7/13/2010
Isopropylbenzene	BQL	0.0200	20	7/13/2010

GCMS

Client Sample ID: 48DW5 (80 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-4A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:10 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.283	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0297	99	
Toluene-d8		0.03	0.0305	102	

4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: 0VD

Reviewed By: 70

0.03

0.0302

101

Client Sample ID: 48DW5 (100 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-5A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:20 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL	0.500	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20	7/13/2010
sec-Butylbenzene	BQL	0.0200	20	7/13/2010
tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform	BQL	0.0200	20	7/13/2010
Chloromethane	BQL	0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20	7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0282	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20	7/13/2010
1,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,3-Dichloropropane	BQL	0.0200	20	7/13/2010
2,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
Ethylbenzene	BQL	0.0200	20	7/13/2010
Hexachlorobutadiene	BQL	0.0200	20	7/13/2010
2-Hexanone	BQL	0.100	20	7/13/2010
lodomethane	BQL	0.0200	20	7/13/2010
Isopropylbenzene	BQL	0.0200	20	7/13/2010

GCMS

Client Sample ID: 48DW5 (100 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-5A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:20 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.356	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0306	102	
Toluene-d8		0.03	0.0305	102	
4-Bromofluorobenzene		0.03	0.0309	103	

Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: ________

Reviewed By: <u>379</u>

Client Sample ID: Trip Blank Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-6A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 0:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date		
Compound	MG/L	Limit MG/L	Factor	Analyzed		
Acetone	BQL	0.0250	· 1	7/13/2010		
Benzene	BQL	0.00100	1	7/13/2010		
Bromobenzene	BQL	0.00100	1	7/13/2010		
Bromochloromethane	BQL	0.00100	1	7/13/2010		
Bromodichloromethane	BQL	0.00100	1	7/13/2010		
Bromoform	BQL	0.00100	1	7/13/2010		
Bromomethane	BQL	0.00100	1	7/13/2010		
2-Butanone	BQL	0.0250	1	7/13/2010		
n-Butylbenzene	BQL	0.00100	1	7/13/2010		
sec-Butylbenzene	BQL	0.00100	1	7/13/2010		
tert-Butylbenzene	BQL	0.00100	1	7/13/2010		
Carbon disulfide	BQL	0.00100	1	7/13/2010		
Carbon tetrachloride	BQL	0.00100	1	7/13/2010		
Chlorobenzene	BQL	0.00100	1	7/13/2010		
Chloroethane	BQL	0.00100	1	7/13/2010		
Chloroform	BQL	0.00100	1	7/13/2010		
Chloromethane	BQL	0.00100	1	7/13/2010		
2-Chlorotoluene	BQL	0.00100	1	7/13/2010		
4-Chlorotoluene	BQL	0.00100	1	7/13/2010		
Dibromochloromethane	BQL	0.00100	1	7/13/2010		
1.2-Dibromo-3-chloropropane	BQL	0.00500	1	7/13/2010		
Dibromomethane	BQL	0.00100	1	7/13/2010		
1.2-Dibromoethane (EDB)	BQL	0.00100	1	7/13/2010		
1.2-Dichlorobenzene	BQL	0.00100	1	7/13/2010		
1.3-Dichlorobenzene	BQL	0.00100	1	7/13/2010		
1.4-Dichlorobenzene	BQL	0.00100	1	7/13/2010		
trans-1.4-Dichloro-2-butene	BQL	0.00500	1	7/13/2010		
1.1-Dichloroethane	BQL	0.00100	1	7/13/2010		
1.1-Dichloroethene	BQL	0.00100	1	7/13/2010		
1.2-Dichloroethane	BQL	0.00100	1	7/13/2010		
cis-1,2-Dichloroethene	BQL	0.00100	1	7/13/2010		
trans-1,2-dichloroethene	BQL	0.00100	1	7/13/2010		
1.2-Dichloropropane	BQL	0.00100	1	7/13/2010		
1.3-Dichloropropane	BQL	0.00100	1	7/13/2010		
2,2-Dichloropropane	BQL	0.00100	1	7/13/2010		
1,1-Dichloropropene	BQL	0.00100	1	7/13/2010		
cis-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010		
trans-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010		
Dichlorodifluoromethane	BQL	0.00500	1	7/13/2010		
Diisopropyl ether (DIPE)	BQL	0.00100	1	7/13/2010		
Ethylbenzene	BQL	0.00100	1	7/13/2010		
Hexachlorobutadiene	BQL	0.00100	1	7/13/2010		
2-Hexanone	BQL	0.00500	1	7/13/2010		
lodomethane	BQL	0.00100	1	7/13/2010		
Isopropylbenzene	BQL	0.00100	1	7/13/2010		

Client Sample ID: Trip Blank Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-6A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 0:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date		
Compound	MG/L	Limit MG/L		Factor	Analyzed		
4-Isopropyltoluene	BQL	0.00100		1	7/13/2010		
Methylene chloride	BQL	0.00500		1	7/13/2010		
4-Methyl-2-pentanone	BQL	0.00500		1	7/13/2010		
Methyl-tert-butyl ether (MTBE)	BQL	0.00100		1	7/13/2010		
Naphthalene	BQL	0.00100		1	7/13/2010		
n-Propyl benzene	BQL	0.00100		1	7/13/2010		
Styrene	BQL	0.00100		1	7/13/2010		
1,1,1,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010		
1,1,2,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010		
Tetrachloroethene	BQL	0.00100		1	7/13/2010		
Toluene	BQL	0.00100		1	7/13/2010		
1,2,3-Trichlorobenzene	BQL	0.00100		1	7/13/2010		
1,2,4-Trichlorobenzene	BQL	0.00100		1	7/13/2010		
Trichloroethene	BQL	0.00100		1	7/13/2010		
1,1,1-Trichloroethane	BQL	0.00100		1	7/13/2010		
1,1,2-Trichloroethane	BQL	0.00100		· 1	7/13/2010		
Trichlorofluoromethane	BQL	0.00100		1	7/13/2010		
1,2,3-Trichloropropane	BQL	0.00100		1	7/13/2010		
1,2,4-Trimethylbenzene	BQL	0.00100		1	7/13/2010		
1,3,5-Trimethylbenzene	BQL	0.00100		1	7/13/2010		
Vinyl chloride	BQL	0.00100		1	7/13/2010		
m-,p-Xylene	BQL	0.00200		1	7/13/2010		
o-Xylene	BQL	0.00100		• 1	7/13/2010		
		Spike Added	Spike Result	Percent Recovered			

 Added
 Result
 Recovered

 1,2-Dichloroethane-d4
 0.03
 0.0294
 98

 Toluene-d8
 0.03
 0.0306
 102

 4-Bromofluorobenzene
 0.03
 0.0293
 98

Comments:

Flags:

BQL = Below Quantitation Limits.

 $\cap VO$ Analyst: ____

Reviewed By: ______

Page <u>f</u> of <u></u>	Preservation 1 – HCI, 4° s 2 – H2O4, 4°	5 - NAOH, 4° 5 - NAOH, 4° 5 - NAOH/ZNAC,	6 – Na2S2O3, 4° 7 – 4°	Vater S – Soil ter SL – Sludge	ter SD - Sediment Atter SO - Sediment Atter SO - Solid er A - Air P - Product	Remarks	20 S	CDOT 60	BIICIAPS	n An	neri	ca,	Inc	-					Temp blank Yes	e 0081
	Container Type P - Plastic A - Amber Glas	V - VOA Vial 0 - Other E - Encore	Matrix Codes:	DW – Drinking V	GW - Groundware GW - Stoundware SW - Surface V ST - Storm Wat		8	2 , 1						_		 , , , , , , , , , , , , , , , , , , ,	 aboratory (Destination):	1a BS	ipped Via: dEx Courier Other	Serial No.
C1037.82	Analysis Requested																Date: אין אין אין שואיונים! L Time: איז איז אין דישאין דישע	Date: Time:	Date: $7/i2/i$ Sample Shi Time: 0800 UPS Fe	
CUSTODY RECORI					NDAR) 6	Field Filtered	N/A 3	Mr	n m	m 7	イ ン					 				C NIA Strad
CHAIN OF C	1/2	1	Tape Nos.:	4	onto: TAT: Nëv Ster Micom	ole Matrix Preserv Iat'i)	t GW HU			7	+						eived by: (Print Name)(Affiliatio	eived by: (Print Name)/(Affiliation	eived by: (Print Name)/(Affiliatic Aultice Autre:	. . S
	Project Location:	Field Logbook No	Chain of Custody	<i>.(</i>),	Send Results/Rep Meuth . Bren	ime C G Samp M A Containe P B (Size/N	30 X Vot	35 X		T Do Do	- + VO						 Date: $7/9/10$ Rec Time: $16:20$ Sign	Date: 7/3/10 Rec Time: /7:30 Sign	Date: $\gamma/1 \circ / 1_0$ Rec Time: $q \neq \beta$	
	ちょう まん-48	os.6	/(Affiliation):	Aeron		tification Date Ti	11 84/2/2 (21 (212) 21 (212)	(13: (13:	- - - - - - - - - - - - - -			/	/		 Name/(Affiliation) 11/Arwn	Ngme/KARIlation)	Name)/(Attivitation)	(COC)Chain-of-Custody_AECOM Environment_08 do
AECOM	Client/Project Name:	Project Number:	Sampler (Print, Name)		Signature:	Field Sample No./Iden	48MW-17	48MW-16	18005 (20	0 419 DWS (100	TRID Blank	-)					Relinquished by, (Print) 0. Boul 1 n 200 Signature:	Reinquished by (Print Adalum - Thir II Signature:	Relinquished by: (Pint Signature	Q \CRAPHICSFORMSChain of Custody (

.